Generalism drives abundance: a computational causal discovery approach

Chuliang Song, Marie-Josée Fortin, Andrew Gonzalez
Department of Biology, McGill University
Department of Ecology and Evolutionary Biology, University of Toronto

CSEE-SCEE Virtual Conference, 2021

More abundant species are also more generalized

Generalism

A chicken-and-egg dilemma:
Generalism drives abundance, or abundance drives generalism

Generalism

Abundance

Computational causal discovery approach

Controlled experiments

Initial condition

Fixed generalism

Causal discovery

A causes B

Causal discovery with formal logic

Example: Detecting causal direction between dodo and extinct species

Causal discovery with formal logic

Example: Detecting causal direction between dodo and extinct species

> Dodo \longrightarrow Extinct species
> Dodo \boldsymbol{x} Extinct species

it is a dodo	it is extinct	Implication
T	T	It is a dodo and is extinct
F	F	It is not a dodo and is not extinct
T	F	It is a dodo and is not extinct
F	T	It is not a dodo and is extinct

Causal discovery with formal logic

Detection of causal direction in abundance and generalism

Abundant-Generalist

Rare-Specialist

Abundant-Specialist If generalism drives abundance

Rare-Generalist
If abundance drives generalism

Formal logic on binary variables does not automatically apply to continuous variables

Generalism drives abundance (selection process is generally stronger than drift process)

Data bias was corrected

Data bias was uncorrected

Rare-Generalist
Abundant-Specialist (Abundance drives generalism) (Generalism drives abundance)

Two other causal discovery methods confirm that generalism drives abundance

$$
X \rightarrow Y
$$

Nonlinear additive noise model based on nonparametric regression

$$
Y=f(X)+C(Y)
$$

Hummingbird		Plant	
Abundance	Generalism	Abundance Generalism	
0.001	0.740	0.001	0.608
Dependent with noise	Independent with noise	Dependent with noise	Independent with noise

Geometric-information inference based on information theory

$$
H(X) \geq H(Y)
$$

Entropy of $\boldsymbol{X} \quad$ Entropy of \boldsymbol{Y}

Hummingbird
 Plant

Abundance Generalism Abundance Generalism
0.77
2.36
0.41
4.58

The strength of selection processes increases when local temperatures are more variable

Take-home message

- Our computational approach allows us to use the relative strength of the causal directions as a proxy of the relative roles of either selection or drift process.
- In contrast to previous findings, all three causal discovery methods consistently found strong evidence that generalism drives abundance in pollinatorhummingbird communities and reef fish datasets.
- Selection processes act more strongly than drift processes when local temperatures are more variable. This generalizes previous known results in two-species communities to multispecies communities.

Thanks!

Marie-Josée Fortin
University of Toronto

Andrew Gonzalez

McGill University

