Untangling the Complexity of Priority Effects in Multispecies Communities

Chuliang Song, Tadashi Fukami, Serguei Saavedra

Department of Biology, McGill University
Department of Ecology and Evolutionary Biology, University of Toronto

Ecological communities are structured by assembly processes

Ken Orvidas, New York Times (2014)

Chace et al., Nature (2020)

Species compositions are structured by assembly history

It is hard or even impossible to know a priori which assembly history will take place

Predictability of species compositions under uncertain assembly history

Assembly history

Species compositions

What makes an ecological community more or less predictable under uncertain assembly history?

Parametric approach to understand ecological assembly via a fixed structure of species interactions

The structures of species interactions are **sensitive** to assembly history

Assembly history changes the niche relationship

Tadashi Fukami, Annual Review of Ecology, Evolution, and Systematics (2015)

Assembly graph =

How species composition changes after species invasions

Nonparametric assembly graph captures the full landscape of ecological assembly

An empirical assembly graph

Nonparametric approach

Diversity of priority effects in multispecies communities

Seeking regularity in the sea of possibilities: Four dynamical sources (topological features) in assembly graphs

Four dynamical sources (topological features) explain the predictability of priority effects

Observed predictability

(direct simulation on the assembly graph)

Relative importance of dynamical sources in explaining the predictability of priority effects

Take-home message

- · Formulation: A non-parametric graph-based formalism to study priority effects
- · Diversity: Super exponential increase with community size.
- Classification: Priority effects can be classified by decomposing them into four basic dynamical sources:
 - * The number of alternative stable states
 - * The number of alternative transient paths
 - * The length of composition cycles
 - * The interaction between alternative stable states and composition cycles.

Thanks!

Serguei Saavedra MIT

Tadashi Fukami Stanford

