Towards a probabilistic understanding of transformations of species interactions

Chuliang Song

Department of Civil and Environmental Engineering, MIT

No species is an island

Building blocks of ecological communities

Types of species interactions are not fixed

Low elevation

High elevation

Mechanistic approach: understanding the origin of the transformation

Detailed mechanistic understanding (*why*) *⇒* Predictive power in multispecies community (*when*)

Moving from a mechanistic approach to a probabilistic one

Transformation in multispecies community

Disentangle the transformation probability

How to estimate transition probability

Transition probability

Number of potential transitions depend on the diversity of interaction types

Transition probability

Transition diagram for 3-species modules

Biotic structure

$$(+,-) \rightarrow (-,-)$$

Transition probability

$$(+,+) \rightarrow (+,-)$$

 $(-,-) \rightarrow (+,-)$

How to estimate persistence probability

Persistence probability

Domain of persistence Ω

(conditioned) Persistence probability

Persistence probability from $A \rightarrow B$ in two extreme scenarios

Highly changing environment

 $\mathbb{P}(\text{persistence}) = \Omega(\mathbf{B})$

Relatively fixed environment

$$\mathbb{P}(\text{persistence}) = \frac{\Omega(\mathbf{A} \cap \mathbf{B})}{\Omega(\mathbf{A})}$$

Summary of the probabilistic approach

$$1/L_A \star \Omega(\mathbf{B}|\mathcal{C})$$

 \mathbb{P} (Transformation) = \mathbb{P} (Transition) * \mathbb{P} (Persistence)

Why this probabilistic disentanglement can be useful for context-dependency?

Computationally feasible

Reconciling empirical findings

Contrasting results on transformations

Mutualism is the *most* likely to transform in **laboratory** experiments.

How context dependent are species interactions?

Scott A. Chamberlain ⋈, Judith L. Bronstein, Jennifer A. Rudgers

Mutualism is the *least* likely to transform in **nature**.

Opinion

Mutualisms Are Not on the Verge of Breakdown

Megan E. Frederickson^{1,*}

Inevitable trade-off

A larger domain of persistence gives advantage to persistence in a changing environment, but also opens door to more transitions in a fixed environment.

Take home message

- We advocate for a probabilistic approach to provide a null expectation of transformation probability
- The probabilistic approach disentangles the transformation probability into (quantifiable) transition and persistence probabilities
- This framework reconciles why mutualism persists in nature despite being most likely to transform in laboratory experiments

Acknowledgement

Saavedra S

Rohr R

Von Ahn S

