On the consequences of the interdependence of stabilizing and equalizing mechanisms

Chuliang Song

Department of Civil and Environmental Engineering, MIT

January 7th, 2020

STRUCTURAL ECOLOGY

Modern Coexistence Theory in a nutshell

Modern Coexistence Theory in a nutshell: Disentangling ecological differences

Differences in niche: Which seeds to eat

Stabilizing mechanism

Differences in fitness: How good at eating a seed

Equalizing mechanism

Modern Coexistence Theory in a nutshell: Coexistence as a balance of niche overlap and fitness ratio

Widely-held premises of Modern Coexistence Theory

Premise 1

Disentangle the relative roles of the stabilizing and equalizing mechanisms in shaping species coexistence

Premise 2

Provide a continuum of niche-neutrality continuum for species coexistence

Q1: What do we mean when we talk about stabilizing and equalizing mechanisms?

Two parallel sub-frameworks within Modern Coexistence Theory

Two-species framework

A niche for neutrality

Peter B. Adler 🗙, Janneke HilleRisLambers, Jonathan M. Levine

The importance of niches for the maintenance of species diversity

Jonathan M. Levine 🗠 & Janneke HilleRisLambers 🗠

Concepts & Synthesis 🛛 🔂 Full Access

Linking modern coexistence theory and contemporary niche theory

Andrew D. Letten 🔀, Po-Ju Ke, Tadashi Fukami

	Multi-species framework
	Reviews 🔂 Full Access
	Chesson's coexistence theory
	György Barabás 🔀, Rafael D'Andrea, Simon Maccracken Stur
Letter	Full Access
Mean growth rate when rare is not a reliable metric persistence of species	
Jayant Pande, Tak Fung, Ryan Chisholm, Nadav M. Shnerb 🔀	
lc	lea and Perspective 🙃 Free Access
An expanded modern coexistence theory for emp applications	
St	tephen P. Ellner 🔀, Robin E. Snyder, Peter B. Adler, Giles Hooker

The definitions of stabilizing and equalizing mechanisms in the two sub-frameworks

Two-species framework

Dynamics:
$$\frac{1}{N_i} \frac{dN_i}{dt} = r_i \left(1 - \sum_{j=1}^2 a_{ij} N_j \right) \quad (i = 1, 2)$$

Competition strength

Stabilizing: $1 - \rho := 1 - \sqrt{\frac{a_{12}a_{21}}{a_{11}a_{22}}}$

Equalizing:

$$\frac{\kappa_1}{\kappa_2} := \sqrt{\frac{a_{21}a_{22}}{a_{12}a_{11}}}$$

Multi-species framework

Dynamics:
$$\frac{1}{N_i} \frac{dN_i}{dt} = f_i(E_i, C_i) \quad (i = 1, \dots$$

Scaled invasion rate

Stabilizing:
$$A := \frac{1}{S} \sum_{i=1}^{S} \frac{R_i}{\phi_i}$$

Equalizing:
$$\frac{\xi_i}{\xi_j} := \frac{\frac{R_i}{\phi_i} - A}{\frac{R_j}{\phi_j} - A}$$

Stabilizing and equalizing mechanisms are incompatible in the two-species and multispecies frameworks

$$\frac{\kappa_1}{\kappa_2} := \sqrt{\frac{a_{21}a_{22}}{a_{12}a_{11}}} \ge 0$$

Q2: Can we disentangle the relative contributions of stabilizing and equalizing mechanisms?

MacArthur's consumer-resource model as an example

Niche overlap

$$\rho = \sqrt{\frac{a_{12}a_{21}}{a_{11}a_{22}}} = e^{-\frac{(\mu_1 - \mu_2)^2}{4\sigma^2}}$$

Fitness ratio

Resource

$$\frac{\kappa_1}{\kappa_2} = \sqrt{\frac{a_{21}a_{22}}{a_{12}a_{11}}} = e^{-\frac{\mu_1^2 - \mu_1^2}{2(\sigma^2 + \alpha_1)^2}}$$

The effect of stabilizing/equalizing mechanism changes sensitively

No simple or single pattern of the interdependence

Relative contribution of each mechanism is not necessarily indicative of how the two species coexist, unless we know the governing mechanistic model

Q3: Do stabilizing and equalizing mechanisms provide a niche-neutrality continuum?

Breakdown of the niche-neutrality continuum

Interdependency leads to the breakdown of niche-neutrality continuum

Proof of the generality of the breakdown

When trait change occurs in two originally identical species

$\kappa_1/\kappa_2 \approx 1 + p\Delta\mu$

 $\rho < \kappa_1/\kappa_2 < 1/\rho$

Take-home message

- Q1: What do we mean when we talk about stabilizing and equalizing mechanisms?
- A1: Stabilizing mechanisms and equalizing mechanisms have two distinct sets of meanings within Modern Coexistence Theory
- Q2: Can we disentangle the relative contributions of stabilizing and equalizing mechanisms?
- A2: Complex interdependency makes it difficult unless we know the governing mechanistic model with parameters.
- Q3: Do stabilizing and equalizing mechanisms provide a niche-neutrality • continuum?
- A3: Interdependency break this continuum under almost any biologically relevant • circumstance.

Acknowledgement

György Barabás Linköping University

Song, Chuliang, György Barabás, and Serguei Saavedra. "On the consequences of the interdependence of stabilizing and equalizing mechanisms." The American Naturalist 194.5 (2019): 627-639.

Serguei Saavedra MIT

