Structural changes within trophic levels are constrained by within-family assembly rules at lower trophic levels

Chuliang Song

Department of Civil and Environmental Engineering, MIT

08/07/2018, ESA Annual Meeting

Replay the tape of life & Historical contingency

Stephen J. Gould

Observed world

Observed arrival order

Alternative worlds

Alternative arrival order

Q1: How does the observed arrival order affect community persistence?

Q2: In which alternative worlds can we detect the same effect?

A 2000-year long registry of plant arrivals

Temporal structure of herbivore-plant community

Introduction year of non-native plants over 2000 years

Structure of herbivore-plant community at each time

Structure of herbivore-plant community changes with new introduced plant

How does changes in community structure affect community persistence?

What is Structural Stability of Persistence?

➤ The full range of environmental conditions (parameter values) compatible with the persistence of an ecological community

Larger structural stability = Better chance to persist

How to quantify structural stability

Species abundance interaction strength $\frac{dX_i}{dt} = X_i(r_i + \sum_{j=1}^{S} a_{ij}X_j)$ intrinsic growth rate

Community dynamics

Environmental conditions compatible with persistence

Structural stability := Green area

Blue area

Structural stability generally increased as the community assembled over 2000 years

Would this positive trend be detected in any alternative world?

A universe of alternative worlds with purely random arrival orders

Observed arrival order of plants

- Random reshuffling the order

Structural stability is most likely to decrease if the arrival order is purely random

In which alternative worlds can we detect the observed positive trend?

Universes of alternative worlds with assembly rules of plant arrivals

Observed arrival order of plants

Group X

Group Y

- Random reshuffling the order

- Preserving the order of families

(Niche Modification)

- Preserving the order within families (Niche Preemption)

Which assembly rule can exhibit the observed trend?

Arrival order of closely related (but not of distantly related) plant species determines the observed trend

Observed arrival order of plants - Random reshuffling the order - Preserving the order of families (Niche Modification) - Preserving the order within families (Niche Preemption)

Take home message

- Q1: How does the observed arrival order affect community persistence?
- A1: Structural stability generally increased as the community assembled over the time period of 2000 years
- Q2: In which alternative worlds can we detect the same effect?
- A2: The order of introduction of closely-related (but not of distantly-related) plants is likely to be responsible for the observed increasing trend

ECOLOGY LETTERS

Volume 21 Number 8 August 2018

Cover Caption: Tussock moth larva (Elkneria pudibunda) feeding on red oak (Quercus rubra), introduced to Europe about 300 years ago. Photo Credit: Florian Altermatt

WILEY

ACKNOWLEDGEMENT

Saavedra S

Altermatt F

Pearse I

Chuliang Song, Florian Altermatt, Ian Pearse, Serguei Saavedra. "Structural changes within trophic levels are constrained by within-family assembly rules at lower trophic levels". *Ecology Letters*, 2018

