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Our ability to understand and control the emergence of order in swarming systems is a
fundamental challenge in contemporary science. The standard Vicsek model (SVM) !!! a
minimal model for swarming systems of self-propelled particles !!! describes a large population
of agents reaching global alignment without the need of central control. Yet, the emergence of
order in this model takes time and is not robust to noise. In many real-world scenarios, we need
a decentralized protocol to guide a swarming system (e.g., unmanned vehicles or nanorobots) to
reach an ordered state in a prompt and noise-robust manner. Here, we ¯nd that introducing a
simple adaptive rule based on the heading di®erences of neighboring particles in the Vicsek
model can e®ectively speed up their global alignment, mitigate the disturbance of noise to
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alignment, and maintain a robust alignment under predation. This simple adaptive model of
swarming systems could o®er new insights in understanding the prompt and °exible formation
of animals and help us design better protocols to achieve fast and robust alignment for
multi-agent systems.

Keywords: Swarming system; adaptive rule; Vicsek model.

1. Introduction

Collective motion describes the spontaneous emergence of ordered movement in a
system of a large group of units or agents [45], such as insect swarms [30, 32], bird
°ocks [3, 28, 29], ¯sh schools [19, 35], human crowds [14, 16], unmanned aerial
vehicles (UAVs) [33, 46], and even migrating cells [40]. The most representative
collective motion is °ocking [37], which does not involve any central control [33]. For
animals, being a member of a °ock provides various advantages, e.g., minimizing
vulnerability from predators [2, 20, 23, 39, 41], increasing foraging opportunities [8],
and reducing the energetic cost of locomotion [25]. The engineering applications of
°ocking include massive mobile sensing [22], formation control of multi-agent
systems [7, 31], self-organization of UAVs [38], and using the nanorobots to deliver
active payloads for the diagnosis and treatment of cancer [4, 13, 15].

The intriguing phenomena of °ocking have attracted the attention of physicists,
biologists and engineers for decades. In particular, Vicsek et al. proposed a simple
kinetic model [44] for self-propelled particles to reach alignment, a key ingredient for
°ocking [37]. In the standard Vicsek model (SVM), N particles move with a constant
speed v0 in a square zone of size L" L with periodic boundary conditions. Each
particle updates its heading (or direction) at next step based on the average velocity
of its current neighbors within its sensing radius and random noise. The SVM con-
tains three basic free parameters for a given system size N: (i) the noise level or
magnitude !; (ii) the density of particles " ¼ N=L2; and (iii) the constant speed
v0 [44]. If the noise level ! is low enough, all particles will eventually reach consensus
about their headings, i.e., align with each other. With increasing !, the system will
gradually deviate from the perfect alignment state. If ! is high enough, particles
will move in a completely disordered fashion, and the alignment is totally lost.
Hence, SVM displays a continuous kinetic phase transition with increasing noise
level ! [1, 44, 45].

Since Vicsek's pioneering work, many variants of SVM have been developed [5, 6,
9–11, 17, 18, 24, 26, 27, 33, 36, 42, 47–49]. In particular, some variants proposed
adaptive updating rules to speed up the alignment by considering, e.g., a weighted
average of velocities based on the time-varying number of neighbors of each particle
[17], or an adaptive speed of each particle based on the local degree of alignment
[24, 49]. A quick alignment is indeed very important for animals or general multi-
agent systems to avoid obstacles [43] and minimize vulnerability of predators [2, 20,
23, 39, 41], because they can promptly adjust their states according to the emergence
occurred during the motion. However, numerical simulations indicate that previous
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adaptive rules [24, 49] only slightly speed up the alignment (Fig. 1). In some
parameter regime, the speed up is almost negligible. A fundamental question natu-
rally arises: Is there a robust adaptive strategy that can drastically speed up the
global alignment in all parameter regime and yield a robust alignment under noisy
environment? In this paper, we address this fundamental question by proposing a
general adaptive rule.
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Fig. 1. AVM can speed up the alignment in the noiseless case. Order parameter # as a function of
time in SVM ð$ ¼ 0Þ, AVM with $ ¼ 1 and two other adaptive models proposed by [24, 49] (labeled as
AS1 and AS2, respectively) in the absence of noise. The system parameters are N ¼ 100; ! ¼ 0. AVM
aligns faster than SVM, regardless of the di®erent combinations of " and v0. (a) low speed, high density
(v0 ¼ 0:03; " ¼ 4). (b) High speed, high density (v0 ¼ 0:3; " ¼ 4). (c) Low speed, low density
(v0 ¼ 0:03; " ¼ 0:4). (d) High speed, low density (v0 ¼ 0:3; " ¼ 0:4). The data points are obtained by
averaging over 10 di®erent realizations. The error bar stands for standard deviation.
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2. Standard Vicsek Model

In SVM, each particle moves towards a heading in a plane, which can be represented
by a unit directional vector e %&iðtÞ. Here, &iðtÞ is the heading or angle of particle i at
step t, and the Greek letter % represents the imaginary unit. Initially, all the particles
are randomly distributed in a square zone of size L" L with headings following a
uniform distribution in the interval ½0; 2'Þ. The position of particle i is then
updated as

xiðt þ 1Þ ¼ xiðtÞ þ viðtÞ!t; ð1Þ

with periodic boundary conditions. The velocity of particle i is given by viðtÞ ¼
v0e %&iðtÞ and its angle &iðtÞ is updated as

&iðt þ 1Þ ¼ arg e %&iðtÞ þ
X

j2Si

e %&jðtÞ

" #

þ !&iðtÞ: ð2Þ

Here, `arg' gives the angle between the positive real axis and the average heading
vector; Si represents all the neighboring particles (except i itself) within a circle of
sensing radius r that is centered at particle i;!&iðtÞ denotes the noise term randomly
chosen from a uniform distribution in the interval ½!!'; !'( and ! 2 ½0; 1( represents
noise level or magnitude. In order to measure the global alignment of the system, one
can de¯ne the order parameter # as

#ðtÞ ¼ 1

N

XN

i¼1

e %&iðtÞ

!!!!!

!!!!!: ð3Þ

A larger value of # indicates a better alignment. When # ¼ 1, all the particles are
moving in the same direction, i.e., the system reaches a perfect global alignment.

3. Adaptive Vicsek Model

As shown in Eq. (2), the neighbors of particle i contribute equally to the averaging
process. Since each particle can sense its neighbors' headings, it can naturally adjust
each neighbor's contribution in the averaging process simply based on the heading
di®erences between itself and its neighbors. Inspired by the fact that the adaptation
of coupling gains enhances the synchronization of coupled oscillators on a complex
network [12, 50], one can introduce two kinds of adaptive rules:

&iðt þ 1Þ ¼ arg e %&iðtÞ þ
X

j2Si

e %wijðtÞ&jðtÞ

" #

þ !&iðtÞ; ð4Þ

or

&iðt þ 1Þ ¼ arg e %&iðtÞ þ
X

j2Si

wijðtÞe %&jðtÞ
" #

þ !&iðtÞ: ð5Þ

Y. Xiao et al.
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The former makes the neighbors contribute a totally di®erent heading vector to
the focal particle, while the latter makes the neighbors only scale the lengths of their
heading vectors to the focal particle.

For Eq. (4), suppose that wijðtÞ ¼ !ijðtÞ$ for j 2 Si, where !ijðtÞ ¼ minfj&iðtÞ !
&jðtÞj; 2'! j&iðtÞ ! &jðtÞjg represents the absolute heading di®erence between parti-
cles i and j, and $ is the adaptation parameter. Note that (i) if $ ¼ 0, then wijðtÞ ¼ 1
for any j 2 Si, the adaptation reduces to SVM; (ii) if $ > 0 and all the neighbors are
in the same direction as the centered particle i at time t, i.e., 8j 2 Si, &iðtÞ ¼ &jðtÞ,
then wijðtÞ ¼ 1; (iii) if $ < 0 and &iðtÞ ¼ &jðtÞ, then we set wij ¼ 1 for j 2 Si. In-
terestingly, this adaptive rule can introduce an e®ective external ¯eld to particles.
For example, if &i ) &j, wij could be close to zero and e %wijðtÞ&jðtÞ ) 1. That is, once
particle j follows almost the same heading of the focal particle i, the system could not
be stable and is heavily attracted to the direction of & ) 0. Our numerical simulations
demonstrated that Eq. (4) can drastically accelerate the emergence of order in the
swarming system. Yet, the price to pay is that all the particles are always forced to go
in the same direction.

Hereafterwe introduce the exact form of adaptive rulewij in Eq. (5).We consider that

wijðtÞ ¼ ðsin!ijðtÞÞ$; ð6Þ

for j 2 Si, where !ijðtÞ ¼ minfj&iðtÞ ! &jðtÞj; 2'! j&iðtÞ ! &jðtÞjg 2 ½0;'( and $ * 0.
In this case,wij 2 ½0; 1(. If$ ¼ 0, thenwijðtÞ ¼ 1 forany j 2 Si, theadaptation reduces to
SVM. For &i ) &j, this adaptive rule avoids the introduction of an e®ective external ¯eld
because wij only scales the length of e %&j . Equation (6) indicates that

(i) if 0 < !ij < '=2, with increasing !ij the focal particle will adapt more contri-
bution from neighbor particles.

(ii) if '=2 < !ij < ', with increasing !ij the focal particle will decrease the con-
tribution from neighbor particles.

(iii) !ij ¼ 0 indicates no need of adaptive e®ect for the focal particle. !ij ¼ ' means
zero adaptive e®ect because the heading di®erence between particle i and particle j
are too huge to be necessary to consider the adaptive e®ect from particle j. !ij ¼
'=2 represents that the adaptive e®ect from particle j reaches the maximum.

Following this adaptive rule, the focal particle adapts the contributions from
neighbors based on the di®erences of their headings. At ¯rst, the contribution
increases with the increment of heading di®erences between neighbors and focal
particle. Once the di®erence is larger than a threshold ('=2), the contribution will
decrease and eventually will become zero. Hereafter, we introduce the adaptive rule
of Eqs. (5) and (6) to Vicsek model, and call it the adaptive Vicsek model (AVM).

4. AVM aligns much faster than SVM

To systematically check if AVM aligns faster than SVM and other variants in the
absence of noise, we run simulations with di®erent combinations of density " and
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speed v0. The sensing radius r is set to be the unit distance, i.e., r ¼ 1, and the length
of the square zone is determined by L ¼

ffiffiffiffiffiffiffiffiffiffi
N="

p
. Figure 1 shows the order parameter

# as a function of time t under di®erent regimes with low or high density and speed.
We ¯nd that AVM aligns faster than SVM, regardless of the di®erent combinations
of " and v0.

The results shown in Fig. 1 indicate that AVM aligns much faster than SVM in
the noiseless case. Besides, we compare our model to two adaptive variants of Vicsek
model based on the adaptive speed and local polarity (labeled as AS1 [24] and
AS2 [49]), which ¯nd that AVM works better in all (speed and density) regimes. To
check if this still holds in the presence of noise, we calculate the time-averaged order
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Fig. 2. AVM can maintain the alignment of particles in the noisy environment. The average of
order parameter h#ðtÞi (average started from t ¼ 3" 104 to t ¼ 5" 104) as a function of noise level !. (a)
low speed, high density (v0 ¼ 0:03; " ¼ 4). (b) High speed, high density (v0 ¼ 0:3; " ¼ 4). (c) Low speed,
low density (v0 ¼ 0:03; " ¼ 0:4). (d) High speed, low density (v0 ¼ 0:3; " ¼ 0:4). The system parameters
are N ¼ 500, and time lasts 5" 104. AVM is much more robust than SVM, especially in the regime of low
density regardless of low or high speed. The data points are obtained by averaging over ¯ve di®erent
realizations. The error bar stands for standard deviation.
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parameter over the end of 2" 104 steps, denoted as h#ðtÞi, as a function of noise
levels ! (see Fig. 2). We ¯nd that AVM is more robust than SVM in the presence of
noise. Especially for the regime of low density (regardless of low or high speed, see
Figs. 2(c) and 2(d)), AVM can maintain the alignment much better than SVM.
Besides, from Eq. (6) we know that large $ could not be suitable for AVM because
sinð!ijðtÞÞ 2 ½0; 1(. Therefore, we systematically investigate how the adaptation
parameter a®ects the emergence of order (see Fig. 3). The y-axis T#>0:95 in Fig. 3
represents how long it will take the order parameter to be large than 0.95 when
the particles start from a random con¯guration. In Fig. 3(a), T#>0:95 ¯rst decreases
and then increases with increasing $. We ¯nd that $ ¼ 1 is the best choice for all
regimes.

5. Adaptive Rule Yields Robust Alignment Under Predation

To demonstrate the application of AVM in practical scenarios of swarming systems,
we study the chasing-escaping process [2, 21, 34]. Consider predators invade the prey
swarm to chase the prey and the prey can evade predators using an escape response
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Fig. 3. Adaptation parameters a®ect the alignment in the noiseless case. T#>0:95 as a function of
$. When $ ¼ 0, AVM reduces to SVM. (a) Low speed, high density (v0 ¼ 0:03; " ¼ 4). (b) High speed,
high density (v0 ¼ 0:3; " ¼ 4). (c) Low speed, low density (v0 ¼ 0:03; " ¼ 0:4). (d) High speed, low density
(v0 ¼ 0:3; " ¼ 0:4). The system parameters are N ¼ 100. The data points are obtained by averaging over
100 di®erent realizations. The error bar stands for standard deviation.
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[2, 21]. It is crucial for the prey swarm to maintain the global order and have a robust
°ocking under predation. For simplicity, we assume that predator and prey have the
same sense radius, i.e., r ¼ 1, the same speed v0; and the predation rules are:

. Predators: the predators only move along their initial headings during the whole
process and do not interact with other predators and preys.

. Preys: if there were no predators in prey's sensing radius, the prey will move
according to SVM or AVM. Otherwise, the prey will adopt the following escaping
rules: (i) if the prey locates on the left (or right) side of the predator's heading &p,
the prey will adjust its heading as &p þ '=2 (or &p ! '=2), respectively, in the next
step; (ii) if the prey is heading exactly towards the predator (which is very un-
likely), the prey will adjust its heading as either &p þ '=2 or &p ! '=2 with equal
probability in the next step; (iii) if the prey senses multiple predators, it will escape
from the nearest predator. Note that once a prey detects predators in the sensing
radius (r = 1), it will adopt the escaping rule at this step.

Of course one can design more complicated chasing and escaping rules. Here, we
just use the most straightforward rule avoiding predators to demonstrate the impact
of predation on the global order of the prey swarm.

Figure 4 shows the order parameter # of the prey swarm to illustrate the di®erence
between SVM and AVM under predation. Figure 4(a) shows that starting from an
ordered state (# ) 1 at the beginning), the order parameter of AVM and SVM both
decrease but AVM is much slower than SVM, indicating that AVM can still mitigate
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Fig. 4. AVM maintains robust alignment under predation. Order parameter # of the prey swarm
as a function of time for SVM and AVM with $ ¼ 1;N ¼ 1200; " ¼ 3; v0 ¼ 0:2; ! ¼ 0, and L ¼ 20. The
number of predators is Np ¼ 10. (a and c) The predators only move along their initial headings during the
whole process and do not interact with each other. (b and d) The predator can adjust its heading in chasing
its prey. (a and b) We assume that at the beginning the prey swarm is moving in an ordered state (# ) 1).
(c and d) The prey swarm is moving in a disordered state (# ) 0) at the beginning. The data points are
obtained by averaging over 10 di®erent realizations. The error bar represents standard deviation.
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the negative e®ect on the prey swarm even under predation. Figure 4(b) shows that
starting from a disordered state (# ) 0 at the beginning), AVM can form the
alignment much faster than SVM, and AVM can maintain the alignment of the prey
swarm much better than SVM.

Next we consider a more complicated and realistic chasing rule that a predator
can adjust its heading in chasing its nearest prey: vpðt þ 1Þ ¼ vsðtÞ ! vpðtÞ, where `p'
represents predator, `s' represents prey, and vðtÞ represents the velocity vector at
time step t. This means that the predator will take the direction directly pointing to
the prey at the next step. If the predator senses multiple preys, it will chase the
nearest predator. We assume the prey will adopt the same escaping rule as described
above. We ¯nd that under this scenario AVM is still more robust under predation
than SVM (see Figs. 4(c) and 4(d)).

6. Discussion

Our AVM displays a remarkable performance in accelerating the emergence of order,
mitigating the e®ect of noise perturbation, maintaining the robust alignment under
predation. For robots or UAVs, the fast alignment can reduce the time to form
°ocking at the beginning or after formation adjustment. The noise-robust property is
more important for the motion of large population of units because noise is ubiqui-
tous and sensing information with noise has a negative e®ect on decision making for
agents or animals. Note that we only consider the external noise in the AVM. Fur-
ther studies should consider more complicate and robust scenarios, such as intrinsic
noise and possible delays. Furthermore, in the noisy environment AVM can stabilize
the °ocking and prevent the ordered regime being totally damaged by persistent
noise. Finally, AVM maintains robust alignment of the prey swarm even under
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Fig. 4. (Continued)
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predation, which has a clear implication in practical problems related to swarming.
In a word, due to the ability of fast alignment, rapid rearrangement of °ocking and
strong robustness to noise and predation, AVM has wide implications for under-
standing °ocking behavior of animals, helping us design better algorithms for for-
mation control of UAVs and e±cient delivery of nanorobots. However, this AVM is
based on numerical simulations and its theoretical analysis such as order convergence
will be further studied in the future. Besides, our model is the phenomenological
approach to mimic the °ocking of real animal formations which lacks of considera-
tions of physical and biological limitations, such as, the vision of distance and sense of
neighbors. When transitioning between scenarios, i.e., from particles to animals, our
model should consider the reality instead of the perfect particles.
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