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Abstract

The history of species immigration can dictate how species interact in local communities, thereby

causing historical contingency in community assembly. Since immigration history is rarely known,

these historical influences, or priority effects, pose a major challenge in predicting community as-

sembly. Here, we provide a graph-based, non-parametric, theoretical framework for understanding

the predictability of community assembly as affected by priority effects. To develop this frame-

work, we first show that the diversity of possible priority effects increases super-exponentially

with the number of species. We then point out that, despite this diversity, the consequences

of priority effects for multispecies communities can be classified into four basic types, each of

which reduces community predictability: alternative stable states, alternative transient paths,

compositional cycles, and the lack of escapes from compositional cycles to stable states. Using a

neural network, we show that this classification of priority effects enables accurate explanation of

community predictability, particularly when each species immigrates repeatedly. We also demon-

strate the empirical utility of our theoretical framework by applying it to two experimentally

derived assembly graphs of algal and ciliate communities. Based on these analyses, we discuss

how the framework proposed here can help guide experimental investigation of the predictability

of history-dependent community assembly.
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Introduction

An ecological community’s assembly history is defined by the order and timing of species ar-

rival (Fukami, 2015). Arrival timing and order have a strong random component (Gould, 1990;

Sprockett et al., 2018), making it difficult to predict which assembly history will take place.

The large number of conceivable assembly histories has highlighted the necessity of understand-

ing how history affects the diversity, composition, and functioning of an ecological community

(Fukami & Morin, 2003; Toju et al., 2018; Carlström et al., 2019; Clay et al., 2020). In this vein,

mounting data suggests that assembly history affects which species survive because species can

interact in local communities differently depending on arrival order and timing (Fukami, 2015),

the phenomenon known as priority effects. Much of our present understanding of priority effects,

however, is based on the simple 2-species Lotka-Volterra model and its variants (Gilpin & Case,

1976; May, 1977; Mordecai, 2013; Fukami et al., 2016; Wittmann & Fukami, 2018; Ke & Letten,

2018; Song et al., 2020; Ke & Wan, 2020). It remains unclear how the diversity and complexity

of priority effects expand beyond these models and when considering multispecies communities

(Lawton, 1999; Fukami, 2015).

For example, arrival order dictates one of the three well-studied outcomes of 2-species competi-

tion in the Lotka-Volterra model (Figure 1A) (Case, 2000): (I) coexistence (two species coexist

regardless of who arrives first); (II) deterministic exclusion (the same species always excludes

the other regardless of who arrives first); and (III) history-dependent exclusion (the species that

arrives first excludes the other). Though not as widely recognized, three other outcomes are

also possible in 2-species competition: (IV) two species eventually coexist despite requiring a

specific arrival order; (V) only one species survives or two species coexist depending on who

arrives first; and (VI) the species that arrives late always replaces the species that arrives early.

The presence of these other possibilities has been supported by empirical evidence (Drake, 1991;

Warren et al., 2003; Amor et al., 2020; Angulo et al., 2020). Of these six scenarios, (III), (V)

and (VI) all represent priority effects. The common omission of cases (V) and (VI) in theoretical

studies is a consequence of assuming that model parameters are fixed and history-independent

(Rudolf, 2019; Zou & Rudolf, 2020). In reality, interaction strengths can be history-dependent

(Rasmussen et al., 2014; Poulos & McCormick, 2014; Vannette & Fukami, 2017; Carter & Rudolf,

2019; Sniegula et al., 2019). Thus, the scope of priority effects is largely underestimated by

traditional parametric models assuming history-independent interaction strengths.

Moreover, the scope of priority effects quickly increases as more species are considered. For

example, even with only three species, 41,979 outcomes are theoretically possible, the bulk of

which constitute priority effects (Figure 1D). In general, as the number of species increases,
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the number of alternative outcomes increases super-exponentially (Figure 1D). The core reason

behind this super-exponential increase is that, while all history-independent dynamics are alike,

priority e�ects can be unique in their own way (Fukami, 2015). Only when all conceivable

assembly histories result in the same community composition does history-independent dynamics

arise. The extremely large number of assembly dynamics in multispecies communities makes the

prospect of predicting community assembly daunting (Lawton, 1999; Srivastava, 2018).

While knowing the exact assembly dynamics operating in a community may be an impossible task

indeed, we may still be able to understand the predictability of community assembly a�ected by

priority e�ects: the extent to which we can predict community composition given the stochasticity

of assembly history. For instance, if in one case all di�erent assembly histories lead to di�erent

outcomes, and if in another case only one assembly history leads to a di�erent outcome, the latter

case has a much more predictable outcome than the former (Margalef, 1973). Understanding the

predictability of community assembly is not only of basic interest to ecologists, but can also aid

applications of community ecology for ecosystem management, including ecological restoration,

biological control, and the medical treatment of the gut microbiome (Song & Saavedra, 2018;

Sprockett et al., 2018; Rohr et al., 2020; Denget al., 2021). Yet, a theoretical framework is

largely lacking for quantifying the predictability of community assembly in this context.

Here, we introduce a non-parametric graph-based approach to studying the diversity of priority

e�ects in multispecies communities. Taking this approach, we propose an information-based

metric to quantify community predictability, with a focus on the in
uence of priority e�ects.

We show that the predictability of community assembly has two types of regularities: (1) The

higher the invasion times, the higher the predictability; (2) Predictability of �nal composition

and of temporary changes in community compositions are strongly correlated. We then show

that the consequences of priority e�ects for community predictability can be classi�ed into four

basic sources: the number of alternative stable states, the number of alternative transient paths,

the length of compositional cycles, and the presence or absence of an escape from cycles to

stable states. We demonstrate both theoretically and empirically that this classi�cation allows

for accurate explanation of community predictability. Finally, we discuss how our results can be

used to guide experimental studies for community assembly.

A non-parametric graph-based approach

To capture the full diversity of priority e�ects, we introduce a non-parametric graph-based ap-

proach. This approach maps any assembly dynamics uniquely onto an assembly graph, where
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nodes represent combinations of coexisting species and directed links represent how species com-

binations change when a new species invades. This form of graph presentation is not new (Hang-

Kwang & Pimm, 1993), but has been largely underused. We illustrate this approach with two

hypothetical species, where species are denoted asA and B (Fig. 1B). This illustrative assembly

graph has 22 � 1 = 3 nodes: f Ag, f Bg, and f A, Bg, which represent all possible species combi-

nations. The link starting from community (node) f Ag is generated by the invasion of species

B, which can lead to all three possible species combinations (similarly for communityf Bg). In

turn, community f A, Bg does not have any directed link since all species are present in this

community. For example, case (II) in Figure 1B shows the graph representation of deterministic

exclusion: invasion from speciesB into community f Ag leads to community f Bg, whereas invasion

from speciesA into community f Bg also leads to community f Bg. Note that there are in total

3� 3 = 9 assembly dynamics without considering which species is named asf Ag or f Bg (which is

arbitrary). Formally, this only considers topologically uniqueassembly dynamics (graphs), where

an assembly graph is unique up to the ordering of species labels. Thus, with 2 species, there are

only 6 topologically unique assembly dynamics (Fig. 1B).

We now generalize our approach to multispecies communities. For simplicity, we present this

extension with 3 species with species denoted asA, B, and C. The assembly graph has 23 � 1 = 8

nodes, representing all possible species combinations. In a community with a single species

(f Ag, f Bg, or f Cg), there are two outgoing links representing invasions by the other two species,

respectively. For instance, in communityf Ag, one of the two outgoing links represents the invasion

by speciesB, which can lead to all three possible combinations of speciesA and B (f Ag, f Bg,

or f A,B g). Then, in a community with two species (f A,B g, f A,C g, or f B,C g), there is one

outgoing link representing the invasion by the only species not present in the community. That

is, in community f A,B g, the only outgoing link represents the invasion by speciesC, which can

lead to all eight possible combinations of speciesA, B, and C. Note that community size may

decrease after an invasion. Finally, in the community with all three species (f A,B,C g), there is

no outgoing link since all species are present. In total, there are 41,979 topologically di�erent

assembly dynamics for just 3 species.

The same procedure above applies to an arbitrary number of species. The assembly graph for

S species has (2S � 1) nodes. The nodes representing communities withn species have (S � n)

outgoing links. Each of the associated outgoing links from the node withn species can possibly

lead to (2(n+1) � 1) nodes. Then, out of the (2(n+1) � 1) nodes, only one node contains (n + 1)

species,
� S

n+1

�
nodes containn species, while all the other nodes contain less thann species. As a

�rst-order of approximation, the diversity (number) of topologically di�erent assembly dynamics
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can be calculated as (see Appendix A for derivation):

Q S
n=1

�
2n+1 � 1

� (S� n)(S
n )

S!
�

22S � 2S2
eS

p
2�S S+ 1

2

: (1)

Figure 1D shows how the diversity of priority e�ects scales with the number of species. Note that

already with 6 species, the diversity is signi�cantly greater than the total number of atoms in the

entire universe (Kragh, 2003).

Priority e�ects and the predictability of community assembly

Priority e�ects give rise to assembly dynamics that are not fully predictable. To quantify this

lack of predictability owing to priority e�ects, it is necessary to de�ne both the pool of possible

assembly histories for a given community and the type of uncertainty to analyze (Fig. 2). Focusing

on the pool of assembly histories, if an in�nite number of invasions is possible, the pool of

assembly histories is also in�nite. While this assumption is typically applied to allow statistical

convergence, it is a rather strong assumption that is often not met (Hubbell, 1997; Capit�an

et al., 2009; Serv�an & Allesina, 2020). As the assembly graph fully determines the trajectory of

community composition given any assembly history, we can study any arbitrary pool of assembly

histories (Appendix B). Here, for simplicity, we assume that each species invadesm times. With

2 species, if species can only invadem = 1 time, the pool of possible assembly histories consists

of only two assembly histories:AB��! (meaning speciesA invades �rst and then speciesB invades)

and BA��! (Fig. 2B). But if we have 3 species that each invadem = 2 times, the pool of possible

assembly histories consists of 6!
2!2!2! = 90 assembly histories. For example,ACBCAB�������! is a possible

assembly history, meaning that speciesA invades �rst, then speciesC invades, and so on until

speciesB invades last. By changing the number of invasion attempts (m), it is also possible

to answer how largem has to be to e�ectively generate the same e�ects as in�nite invasions.

Similarly, our framework can be easily adapted to incorporate more ecological complexity, such

as that some species arrive with higher frequency than others (see Appendix B for details).

Shifting our focus to the type of uncertainty to analyze, we suggest that, given a pool of assembly

histories, it is possible to measure two types of uncertainties related to community composition.

The �rst type is the uncertainty associated with the �nal community composition across all

assembly histories. The second type is the uncertainty associated with transient community com-

positions along all assembly histories. Here, to quantify the predictability of assembly dynamics,

we adopt a normalized information entropy metric (Rohr et al., 2016). Although there are many

alternative uncertainty metrics (Vellend, 2016), information entropy has been useful to quantify
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and explain di�erent ecological processes (O'Connoret al., 2019; Marleauet al., 2020; Zuet al.,

2020; Margalef, 1973). We de�ne the predictability of an assembly dynamics as

predictability := 1 � entropy (uncertainties) = 1 +
P

i P(x i ) log(P(x i ))
log(2S � 1)

; (2)

where x i is a species combination andP(x i ) is the probability that combination x i occurs (Fig.

2A). The entropy is normalized to [0; 1] to ensure interpretability across di�erent community sizes.

Thus, a predictability of one (resp. zero) implies that that there is no (resp. full) uncertainty

about the assembly dynamics.

To illustrate this measure, let us consider the assembly dynamics de�ned by case (IV) shown

in Figure 1B, where each species invades only once. In this example (Fig. 2B), if the assembly

history AB��! takes place, the trajectory of the community is from f Ag ! f B g. Instead, if assembly

history BA��! takes place, the trajectory is fromf B g ! f A; B g. Therefore, the predictability of the

�nal community composition is given by predictability( f B g; f A; B g) = 1+ :5 log(:5)+ :5 log(:5)
log(3) = 0 :37.

Similarly, the predictability of the assembly trajectory (the temporary community compositions)

are predictability( f Ag; f B g) = :37 and predictability( f B g; f A; B g) = :37. Figure 2B illustrates

the process of quantifying this predictability for a set of 3 species. The agreement between the

two types of predictability is not a coincidence. Figure 3A shows the strong correlation between

the two types of predictability across all possible assembly dynamics for 3 species. The level of

correlation is invariant across di�erent pools of potential assembly histories. Thus, without loss

of generality, hereafter our results are based on the �rst type of predictability (i.e., on the �nal

community composition). Communities become more predictable when species are allowed to

invade multiple times. Figure 3B shows how the distribution of predictability across all possible

assembly dynamics with 3 species increases as a function of the number of invasion attempts.

Classifying priority e�ects

As shown above, there are signi�cant di�erences in the predictability of community assembly.

Here, we show that we can decompose community predictability into four basic sources: the

number of alternative stable states, the number of alternative transient paths, the length of

compositional cycles, and the presence or absence of an escape from cycles to stable states.

Alternative stable states occur when a community has more than one stable composition (left

column of Figure 4A) (Gilpin & Case, 1976; Schr•oderet al., 2005; Schooleret al., 2011). Alter-

native transient states occur when there are more than one assembly histories (or trajectories)

from the founding species to the stable states (middle column of Fig. 4A) (Fukami & Nakajima,
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2011, 2013; Sarneelet al., 2019). Compositional cycles occur when the assembly histories involve

cyclic sequences of community composition (right column of Fig. 4A) (Schreiber & Rittenhouse,

2004; Fox, 2008). Our graph-based approach can identify these dynamical sources as topological

features. That is, alternative stable states arise when the assembly graph has more than one sink

(nodes that have incoming links but no outgoing link); alternative transient states arise when

more than one directed path exist from single species to a sink; while compositional cycles occur

when directed cycles exist in the assembly graph. These three dynamical sources have already

been hypothesized to be major drivers of priority e�ects (Fukami, 2015).

The three dynamical sources are not mutually exclusive, implying that assembly dynamics can

potentially exhibit all of these sources. For example, the assembly graph for the 3 species shown

in Figure 4B has two alternative stable states (f A; C g and f Cg), one transient path for each

stable state (f Ag ! f A; C g and f Ag ! f B g ! f A; C g), and one compositional cycle of length

3 (f B g ! f A; B g ! f B; C g ! f B g). However, the picture is not complete with only these

three sources. Figure 4C shows another example of an assembly graph for 3 species with the

same types and number of dynamical sources as shown in Figure 4B. Nevertheless, the assembly

dynamics in Figure 4C has lower predictability than the one shown in Figure 4B. The di�erence

between these two cases is given by the fact that only in Figure 4B, the assembly dynamics

exhibits the possibility to escape from a cycle to a stable state (i.e., the trajectory can escape

the compositional cycle (f B g ! f A; B g ! f B; C g ! f B g) into a stable state (f Cg). Because

cycles are less predictable than stable states in general, this possibility to escape can increase

the predictability of assembly dynamics. According to some original de�nitions of compositional

cycles (Morton & Law, 1997; Steiner & Leibold, 2004; Fukami, 2015), compositional cycles are

strictly permanent such that, if a \cycle" has an escape to a stable state, it actually does not

represent a compositional cycle, but rather constitutes alternative transient paths. In this paper,

we adopt a broader de�nition of compositional cycles to refer to those with an escape to a stable

state as well as those without.

Therefore, to classify priority e�ects by their predictability, we propose to use the four dynamical

sources (topological features): alternative stable states, alternative transient states, compositional

cycles, and the presence or absence of an escape from cycles to stable states. We used a neural

network to carry out this classi�cation. In short, the architecture of the neural network is as

follows: the input layer is a four-dimensional vector, which encodes the four topological features

of an assembly graph; the �ve hidden layers all have ReLU activation; and the output layer is the

explained predictability. Appendix C provides a more detailed description of the neural network.

For simplicity, we measure the explanatory (classi�cation) power using the the correlation between

observed and classi�ed predictability in the out-of-sample test set. Focusing on the case of
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3 species, we found that the classi�cation works better for assembly dynamics with multiple

invasions. Speci�cally, the classi�cation displayed an explanatory power of 0:57 and 0:98 for

single (m = 1; Fig 5A) and multiple ( m = 15; Fig 5B) invasions, respectively. The explanatory

power increases with the number of invasions and reaches a plateau aroundm = 8 invasions

(Figure 5C). These results are qualitatively the same for larger communities (Appendix D).

Finally, we used a regression-based scheme (Gr•ompinget al., 2006) to quantify the relative impor-

tance (contribution) of each topological feature (dynamical source) to the classi�cation power of

priority e�ects. Figure 5D shows that the relative importance of topological features changes with

the number of species invasions. Additionally, this �gure shows that the relative importance of

the number of stable states remains constant across invasion times, while the relative importance

increases for both the number of transient paths and the presence of an escape from cycles to

stable states, but it decreases for the length of cycles. Moreover, this result shows that the relative

importance of the number of stable states can be smaller than the combined importance of the

other three sources (similar results are found for larger communities, see Appendix D), revealing

the need to account for these other topological features to better understand the existence of

priority e�ects in ecological communities.

From theory to testable hypotheses

Our theoretical framework illustrates that priority e�ects can take a large set of possibilities,

most of which are outside the realm of traditional theoretical predictions. However, only em-

pirical evidence can discern which assembly dynamics are possible and which are not, given the

internal and external constraints acting on ecological communities (Medeiroset al., 2021). For

example, Drake (1991) recorded all the necessary data to empirically map the assembly graph

for 3 species of algae (see also Zimmermannet al. (2003)), while Warren et al. (2003) empirically

mapped the assembly graph for 6 species of ciliates. In Figure 5, we analyzed these two assembly

graphs following our methodology. The predictions of our framework apply to these two com-

munities. First, they exhibit combinations of dynamical sources (topological features). Second,

their predictability increases with more invasions and then saturates to a �xed value. Third, their

predictability can be explained from the generic importance (obtained from the trained neural

network) of each dynamical source.

Unfortunately, we were unable to locate any other empirical studies that mapped assembly graphs.

The dearth of empirical studies regarding these dynamics is not surprising given both the chal-

lenges involved in performing detailed experiments and also their under-appreciated potential to
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answer central questions in community ecology (Fukami, 2015; Vellend, 2016). In this regard, we

discuss some viable empirical designs for inferring assembly graphs in ecological communities. A

direct approach to infer assembly graphs should include determining which species combinations

can persist and then mapping how these combinations change after a new species is introduced.

Although this direct approach may seem to require an exhaustive combinatorial design that is

too labor-intensive to be feasible, the actual experimental workload can be much lower.

To explain the work required, we �rst focus on identifying the persistent species combinations (i.e.,

knowing the nodes in assembly graphs). While a community withS species has 2S � 1 potential

species combinations, it has been shown that only a small fraction of such combinations can

persist (Angulo et al., 2020). Because of the sparsity of these persistent combinations, recently

developed computational tools based on Bayesian inference (Maynardet al., 2020) and deep

learning (Michel-Mata et al., 2021) can facilitate the inference of all persistent combinations using

a small number of experiments in a community with S species. In brief, the method developed

by Maynard et al. (2020) can infer the coexistence of all 2S � 1 species combinations from a

minimum of S + 1 experiments based on measures of species'absoluteabundances (1 experiment

is to grow the full community of S species and the otherS experiments are to grow leave-one-out

communities comprising S � 1 species each). The goal of the method proposed by Michel-Mata

et al. (2021) is similar to Maynard et al. (2020)'s, but a major di�erence is that Michel-Mata

et al. (2021) only requires experimental measures of species'relative abundances. Moreover, if we

are only interested in bottom-up assembly (i.e., starting with no species, and then adding species

one by one), then persistent combinations that are unreachable via introduction of single species

do not need to be mapped to construct the corresponding assembly graph. In Appendix E, we

analyzed all assembly dynamics for 3 species and found that more than 90% of assembly dynamics

contained unreachable combinations (Figure S7), which would make the inference problem more

feasible.

Focusing now on how species composition changes after the introduction of a new species (i.e.,

knowing the edges in assembly graphs), we suggest that the experimental procedure can follow

the standard procedures in assessing the e�ects of species introductions (Friedmanet al., 2017;

Grainger et al., 2019a; Spaak & De Laender, 2020; Merozet al., 2021). In brief, one would intro-

duce an invader species to the resident community at low abundance (relative to the abundance

of the resident species) and assess whether species composition changes. Recently developed

computational tools can also facilitate the inference (Denget al., 2021; Pandeet al., 2021). If

we are only interested in bottom-up assembly, then many edges do not need to be mapped to

construct the corresponding assembly graph. In Appendix E, we analyzed all assembly dynamics

for 3 species and found that more than 80% of dynamics contained unreachable edges (Figure
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S8).

While alternative stable states have been the most studied consequence of priority e�ects, our

framework indicates that the three other consequences of priority e�ects can have a stronger

contribution to community predictability, especially in small communities. This possibility can

be tested by exploiting the strong constraints between dynamical sources and predictability of

priority e�ects. Speci�cally, to study these additional dynamical sources, we can use alternative

computational approaches based on pairwise interaction strengths inferred from experiments on

2-species communities (Case, 2000). Such empirical data are increasingly available spanning a

wide range of study systems, such as annual plants (Godoyet al., 2014; Kraft et al., 2015),

perennial plants (Uricchio et al., 2019; Songet al., 2021), and microbial systems (Xiaoet al.,

2017; Keheet al., 2020). Thus, the empirical assembly graphs can be computationally mapped

with empirically parameterized population dynamics models. However, it is worth remembering

that a de�ning feature of priority e�ects is that interaction strengths likely depend on assembly

history (Fukami, 2015; Song et al., 2018), questioning the validity of inferences based on �xed

interaction strengths. Because we know little about how variable these interaction strengths are

(Park, 1954), it would be best to combine experimental and computational approaches. That

is, the di�erences between the observed assembly graph in the experimental approach and the

inferred graph from the computational approach may provide clues as to how variable interaction

strengths are due to the assembly history. A caveat, though, is that these assembly dynamics may

take many generations to emerge, thus computational models with �tted empirical interactions

from only a few generations risk �nding spurious dynamics that do not exist.

Discussion

In the story \The Garden of Forking Paths," Jorge Luis Borges envisioned a labyrinth where

divergence takes place in time rather than space, and where di�erent paths sometimes lead to

the same conclusion. Similarly, an assembly history on an assembly graph can be thought of as

a forking path since it also creates temporal trajectories of species composition that can lead to

the same �nal state or di�erent ones. By borrowing tools from graph theory, we have provided a

non-parametric framework to scan the complete terrain of the labyrinth of priority e�ects. This

framework has allowed us to classify priority e�ects, enumerate all possible assembly dynamics

operating in a community, and quantify how predictable these dynamics would be if species arrival

history was stochastic and unknown.

We have introduced the concept of topologically unique assembly graphs. This concept has al-
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lowed us to rigorously estimate the diversity of priority e�ects in multispecies communities. We

have estimated the exact diversity for 2-species and 3-species sets, and, as a �rst-order approx-

imation, for sets of more than three species (Figure 1D). We have revealed a much richer set

of assembly dynamics than traditional parametric approaches typically capture. The parametric

approaches typically make two pivotal assumptions: history-independent interaction strength and

invasion analysis. In invasion analysis (Graingeret al., 2019b), the invasion criteria assumes only

two possibilities for a community with n species after invasion: either it hasn + 1 species (if the

invasion was successful), or remains withn species (if the invasion was unsuccessful). However,

evidence indicates that the set of potential assembly dynamics in ecological communities can be

larger than those considered by invasion analyses (Warrenet al., 2003; Saavedraet al., 2017;

Barab�as et al., 2018; Carlstr•om et al., 2019; Amor et al., 2020; Angulo et al., 2020; Denget al.,

2021). Thus, our graph-based approach may provide a more realistic analysis of ecological dy-

namics than those approaches focusing on history-independent interaction strength and invasion

analysis.

Following previous work (Fukami, 2015), we have shown that priority e�ects can di�er in terms

of their contribution to community predictability. We have focused this predictability on species

composition given the uncertainty derived from the potential assembly histories (Figure 2). We

have demonstrated that two types of predictability can be investigated: on the �nal composition

and on the temporary changes in composition (trajectories). We found that these two types

are often correlated and yield similar results (Figure 3A). Thus, the two types of predictability

have similar information, a phenomena that is analogous to ergodicity in statistics (Strogatz,

2014). However, assembly dynamics is in general not ergodic (e.g., a stable state would render

the dynamics non-ergodic) and more research is necessary.

Additionally, we have shown that the predictability of a community generally increases with re-

peated invasions (Figure 3B). On a conceptual level, with more species invasions, deterministic

ecological processes are more likely to overwhelm stochastic events. In the context of assembly

graphs, the topological features of assembly graphs become apparent only when when the commu-

nity trajectories are long enough. Thus, laboratory experiments that only allow single invasions

(e.g., Drake (1991); Lawler & Morin (1993); McGrady-Steedet al. (1997)), as opposed to multiple

invasions (e.g., Robinson & Dickerson (1987)), may underestimate community predictability in

nature, where recurrent migrations are common (Newton, 2010; Secor, 2015). The predictabil-

ity of a community does not always increase with more invasions at the same rate, but rather

saturates at a constant value (Figure 3B). Thus, laboratory studies can approximate community

predictability in nature with two complimentary approaches. The �rst approach is to perform a

few invasions. About 10 times is more than enough for up to �ve species (Appendix D), provided
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that the time interval between invasions is large enough to allow the communities to approach an

equilibrium. The second approach is to empirically map the assembly graph, which can fully de-

termine the community predictability with an arbitrarily given pool of assembly history, although

it generally takes more experimental e�orts.

Moreover, we have shown that this predictability can be used to classify priority e�ects. We have

shown that four dynamical sources can be expressed as topological features within our graph-

based approach to know the predictability of assembly dynamics (Figure 4). These sources are

the number of alternative stable states, the number of alternative transient paths, the length of

compositional cycles, and the presence or absence of an escape from compositional cycles to stable

states. We have found that both the frequency and combination of the four topological features

are good predictors of how many outcomes to expect (Figure 5). We have also found that the

explanatory power of these four topological features increases when species attempt to invade

multiple times (Figure 5C). While the number of alternative stable states has received most of

the attention (Schr•oder et al., 2005; Serv�an & Allesina, 2020; Amor et al., 2020; Abreu et al.,

2020), we show that the other three sources, especially in small communities, can contribute more

to community predictability (Figure 5D). The trained neural network has predicted the observed

predictability of two empirical assembly dynamics (Drake, 1991; Warrenet al., 2003) well (Figure

6).

Our non-parametric graph-based approach is not intended to replace the parametric model-based

approach. Parametric models are irreplaceable tools to understand priority e�ects, but non-

parametric approaches are more 
exible for accommodating di�erent theoretical tools (Barab�as

et al., 2018; Arnoldi et al., 2019; Pandeet al., 2020; Spaak & De Laender, 2020). For example,

while our approach uncovers three other types of priority e�ects for 2 species (Figure 1) that are

not covered in classic Lotka-Volterra approaches (Fukamiet al., 2016; Ke & Letten, 2018), all

priority e�ects can occur in parametric models by integrating processes where the assembly history

a�ects parameters. Thus, our non-parametric graph-based approach can serve as a roadmap for

the parametric approach by motivating new modelling strategies of priority e�ects. A major

limitation of our approach is that we have focused on species richness or species composition. The

general concept of priority e�ects also covers the functional properties of ecological communities,

such as energy 
ow and productivity (Fukami & Morin, 2003; Dickie et al., 2012; Tan et al.,

2012). A possible solution is to establish a functional map from the nodes or the links in the

assembly graph onto the functional property (e.g., productivity function in Rohr et al. 2016).

The 
exibility of our framework may serve as a common currency to characterize priority e�ects

across study systems and theoretical models.
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1

Figure 1: Non-parametric graph-based approach. Panel (A ) presents the traditional model-
based phase diagram of assembly dynamics in 2-species communities using coexistence theory.
The balance between niche overlap (x axis) and �tness ratio ( y axis) determines the types of
assembly dynamics: (I) deterministic existence, (II) deterministic exclusion, or (III) priority
e�ects. Panel (B ) presents all six types of possible assembly dynamics (model-free) using the
graph-based approach. In an assembly graph, the nodes represent the species combinations,
while the links represent how the species combination change into another combination after a
non-resident species invades. Take Case (II) for example: if speciesB (blue line) invades the
community with species A (red circle), speciesA is excluded and the community composition
changes into speciesB (hence the arrow goes from red circle to blue circle); and if speciesA
(red line) invades the community with speciesB (blue circle), speciesA cannot establish and the
community composition remains the same (hence the arrow turns back on itself). Cases (III), (V),
and (VI) are all priority e�ects (marked with � symbol) as at least two di�erent assembly histories
can lead to di�erent compositions. Panel (C) plots how the diversity of priority e�ects increases
with larger community size. We �nd a super-exponential increase of diversity of topologically
di�erent assembly dynamics (Eqn. 1).
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19

Figure 2: Quantifying the predictability of community assembly. Panel (A ) presents the
general procedure used for the calculation: First, based on a given uncertainty (either �nal com-
position or temporary compositions), we de�ne a pool of potential assembly histories. Second, we
need to know the assembly dynamics of the community. Third, each assembly history produces
its community trajectory (how community composition changes with an invading species) based
on the assembly dynamics. Last, we compute predictability on the �nal composition across the
community trajectory (boxed with dashed lines) and on the temporary compositions along the
community trajectories (boxed with solid lines). The de�nition of predictability is based on nor-
malized entropy (see the mathematical de�nition in Eqn. 2 or in the �gure). Panel ( B ) illustrates
this procedure with an example of a 3-species community. First, we de�ne the pool of potential
assembly histories as each species invades only once. This gives us six potential assembly histories:
ABC���! , ACB���! , BAC���! , BCA���! , CAB���! , CBA���! . Second, we choose a 3-species assembly dynamics for il-
lustration. Third, we show the community trajectories de�ned by assembly history and assembly
dynamics. For example, the community trajectory is f Ag ! f A; B g ! f A; B g for the assembly
history ABC���! . Last, we calculate the community predictability: the predictability on �nal compo-
sition is the predictability of the states ( f Cg; 4f A; B g; f A; B; C g)|the �nal compositions in each
community trajectory (boxed in dashed lines), which is 0:55; and the predictability on temporal
composition is the average predictability of six trajectories corresponding to six assembly histories
(boxed in solid lines), which is 0:51.
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