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S1 Information of empirical networks

We have extracted the empirical networks from the public repository web-of-life.es. Because
this repository is actively updated, here we list the identities of the networks we used. Note that
we only used the networks of which we could find their associated environmental information.

Table A: Network labels of mutualistic networks

M_AF_002_01 M_PL_017 M_PL_053 M_PL_061_30 M_SD_001
M_AF_002_02 M_PL_018 M_PL_054 M_PL_061_31 M_SD_002
M_AF_002_03 M_PL_019 M_PL_055 M_PL_061_32 M_SD_003
M_AF_002_04 M_PL_020 M_PL_056 M_PL_061_33 M_SD_004
M_AF_002_05 M_PL_021 M_PL_057 M_PL_061_34 M_SD_005
M_AF_002_06 M_PL_022 M_PL_058 M_PL_061_35 M_SD_006
M_AF_002_07 M_PL_023 M_PL_059 M_PL_061_36 M_SD_007
M_AF_002_08 M_PL_024 M_PL_061_01 M_PL_061_37 M_SD_008
M_AF_002_09 M_PL_025 M_PL_061_02 M_PL_061_38 M_SD_009
M_AF_002_10 M_PL_026 M_PL_061_03 M_PL_061_39 M_SD_010
M_AF_002_11 M_PL_027 M_PL_061_04 M_PL_061_40 M_SD_011
M_AF_002_12 M_PL_028 M_PL_061_05 M_PL_061_41 M_SD_012
M_AF_002_13 M_PL_029 M_PL_061_06 M_PL_061_42 M_SD_013
M_AF_002_14 M_PL_030 M_PL_061_07 M_PL_061_43 M_SD_014
M_AF_002_15 M_PL_031 M_PL_061_08 M_PL_061_44 M_SD_015
M_AF_002_16 M_PL_032 M_PL_061_09 M_PL_061_45 M_SD_016
M_PA_001 M_PL_033 M_PL_061_10 M_PL_061_46 M_SD_017
M_PA_002 M_PL_034 M_PL_061_11 M_PL_061_47 M_SD_018
M_PA_003 M_PL_035 M_PL_061_12 M_PL_061_48 M_SD_019
M_PA_004 M_PL_036 M_PL_061_13 M_PL_062 M_SD_020
M_PL_001 M_PL_037 M_PL_061_14 M_PL_063 M_SD_021
M_PL_002 M_PL_038 M_PL_061_15 M_PL_064 M_SD_022
M_PL_003 M_PL_039 M_PL_061_16 M_PL_065 M_SD_023
M_PL_004 M_PL_040 M_PL_061_17 M_PL_066 M_SD_025
M_PL_005 M_PL_041 M_PL_061_18 M_PL_067 M_SD_026
M_PL_006 M_PL_042 M_PL_061_19 M_PL_068 M_SD_027
M_PL_007 M_PL_043 M_PL_061_20 M_PL_069_01 M_SD_028
M_PL_008 M_PL_044 M_PL_061_21 M_PL_069_02 M_SD_029
M_PL_009 M_PL_045 M_PL_061_22 M_PL_069_03 M_SD_030
M_PL_010 M_PL_046 M_PL_061_23 M_PL_070 M_SD_031
M_PL_011 M_PL_047 M_PL_061_24 M_PL_071 M_SD_032
M_PL_012 M_PL_048 M_PL_061_25 M_PL_072_01 M_SD_033
M_PL_013 M_PL_049 M_PL_061_26 M_PL_072_02 M_SD_034
M_PL_014 M_PL_050 M_PL_061_27 M_PL_072_03
M_PL_015 M_PL_051 M_PL_061_28 M_PL_072_04
M_PL_016 M_PL_052 M_PL_061_29 M_PL_072_05
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Table B: Network labels of antagonistic networks

A_HP_001 A_HP_016 A_HP_031 A_HP_046 FW_007
A_HP_002 A_HP_017 A_HP_032 A_HP_047 FW_009
A_HP_003 A_HP_018 A_HP_033 A_HP_048 FW_010
A_HP_004 A_HP_019 A_HP_034 A_HP_049 FW_011
A_HP_005 A_HP_020 A_HP_035 A_HP_050 FW_012_01
A_HP_006 A_HP_021 A_HP_036 A_HP_051 FW_012_02
A_HP_007 A_HP_022 A_HP_037 A_PH_004 FW_013_01
A_HP_008 A_HP_023 A_HP_038 A_PH_005 FW_013_02
A_HP_009 A_HP_024 A_HP_039 A_PH_006 FW_013_03
A_HP_010 A_HP_025 A_HP_040 A_PH_007 FW_013_04
A_HP_011 A_HP_026 A_HP_041 FW_001 FW_013_05
A_HP_012 A_HP_027 A_HP_042 FW_002 FW_014_01
A_HP_013 A_HP_028 A_HP_043 FW_003 FW_014_02
A_HP_014 A_HP_029 A_HP_044 FW_004 FW_014_03
A_HP_015 A_HP_030 A_HP_045 FW_005 FW_014_04
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S2 Computation of network metrics

We have used three network metrics in the main text: the largest eigenvalue ⁄1, the second
largest eigenvalue ⁄2, and the structural stability of the intra-guild competition. Note that we
only need the binary network to compute these metrics.

To compute the eigenvalues associated with the bipartite networks B, we follow the methods
detailed in Supplementary Information S3 in Michalska-Smith and Allesina [12]. Here we briefly
Specifically, a bipartite network A can be represented in its matrix form, and then compute the
eigenvalues from its associated Laplacian matrix L := D ≠ A, where D is the diagonal matrix.

To compute the structural stability of intra-guild competition, we translate the bipartite network
into the intra-guild competition matrix. Here the intra-guild competition refers how species in
the same guild compete for resources. For example, competition among consumers in antagonistic
communities, or competition among pollinators in mutualistic communities. The competition
strength is computed, following a niche framework [75], as the relative number of shared resources
between two species [55, 56]. Then the structural stability is estimated from the intra-guild
competition matrix [76, 77].
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S3 Correlations among environmental variables

WorldClim provides 19 environmental variables [33]. These variables are labelled from bio1
to bio19 (see http://www.worldclim.org/bioclim). In particular, temperature variability is
labelled as bio4. Here we compute the correlations among these variables for the empirical
ecological networks. Figures A and B show that many environmental variables are strongly
correlated. Figure C shows the correlations among the four environmental variables and the
latitude.
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Figure A: Correlations among environmental variables. The color of the upper-diagonal
element and the numerical value of the lower-diagonal element show the correlation between two
environmental variables. The symbol ◊ corresponds to correlations that are not statistically
significant at the 5% confidence level.
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Figure B: Correlations among environmental variables. This figure is the same as Figure
A except that the environmental variables are arranged into 3 strongly correlated clusters
(denoted by the black square).
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S4 Separability and scalability using other environmental vari-
ables

Figures E-G show the separability and scalability when other environmental variables are used in
the environment-dependent approach. Temperature average (Figure G) and precipitation average
(Figure E) work similarly as temperature variability (Figure 3 and 4A). However, precipitation
variability (Figure F) does not improve much the separability. Figure C suggests that the poor
correlation between precipitation variability and the other environmental variables (temperature
average, temperature variability, and precipitation average) may be the reason why.

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5
Dim1 (74.6%)

D
im

2 
(1

9.
4%

)

A

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5 5.0
Dim1 (58.9%)

D
im

2 
(2

2.
3%

)

B

Groups
●● anatagonistic

mutualistic

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5
Dim1 (74.6%)

D
im

2 
(1

9.
4%

)

C

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5 5.0
Dim1 (58.9%)

D
im

2 
(2

2.
3%

)

D

Groups
●● Host−Parasite

Plant−Herbivore

Anemone−Fish

Plant−Ant

Pollination

Seed Dispersal
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Figure F: Here the environment-dependent approach uses precipitation variability as the environ-
mental conditions. Focusing on separability, Panel (A) shows the separability of the environment-
independent approach, Panel (B) shows the separability of the environment-dependent approach.
Focusing on scalability, Panel (C) shows the scalability of the environment-independent approach,
Panel (D) shows the scalability of the environment-dependent approach.
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Figure G: Here the environment-dependent approach uses temperature mean as the environmental
conditions. Focusing on separability, Panel (A) shows the separability of the environment-
independent approach, Panel (B) shows the separability of the environment-dependent approach.
Focusing on scalability, Panel (C) shows the scalability of the environment-independent approach,
Panel (D) shows the scalability of the environment-dependent approach.
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S5 Additional analysis on specificity

Here we are split the networks into a training set (75%) and a test set (25%). We used
the Support Vector Machine with a Gaussian kernel. We avoided the data imbalance by
keeping the same number of data input from the each community type. To further validate
the criterion specificity, we compare four possible cases: (1) randomize the network structure
and randomize the temperature variability, (2) randomize the network structure and keep the
observed temperature variability, (3) keep the observed network structure and randomize the
temperature variability, and (4) keep the observed network structure and keep the observed
temperature variability.

Figure H shows how the correct classification percentage changes compare to the baseline. We
found that, not surprisingly, “Observed network structure + Observed temperature variability”
improves the classification the best and ‘Randomized network structure + Randomized tempera-
ture variability” improves the classification the worst. We also found that “Randomized network
structure + observed temperature variability” improves the classification more than “Observed
network structure + Randomized temperature variability”

Observed network structure
+ Observed temperature variability

Observed network structure
+ Randomized temperature variability

Observed network structure only

Randomized network structure
+ Observed temperature variability

Randomized network structure
+ Randomized temperature variability

Randomized network structure only
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0.2 0.4 0.6 0.8

Classification accuracy

Precipitation variability

Figure H

We have also tested specificity using the t-Distributed Stochastic Neighbor Embedding (t-SNE)
instead of PCA to test the speciality. Qualitative results remain the same.
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S6 Scaling in PCA

Here we expand the discussion on the specificity criterion in the environment-dependent approach.
To test for specificity, we first randomized the network metrics (by randomizing the network
architecture) and kept the environmental information. Then, we used the PCA to di�erentiate
interaction networks. Importantly, the variables should be scaled before performing a PCA
[36]. We scaled the variables by their own scaling (linear transformation into mean = 0 and
variance = 1). Michalska-Smith and Allesina [12] proposed to scale these variables using the
same scaling of the original data. This other scaling is motivated by treating the empirical data
as the training set, and randomized networks as the test set [12]. Figure J illustrates the two
scaling procedures.

However, these two scaling procedures should not give the same results under the environment-
dependent approach. To see why, we need to understand the confounder e�ects of temperature
variability (environmental information) on network class and network metrics (confirmed by the
multiple regression). Controlling for this confounder gives us the separability in the environment-
dependent approach. Thus, if we randomize the networks and use their own scaling to plot the
PCA (the method we used in the manuscript), it is equivalent to making the e�ect between
network metrics and network class weak, while erasing the link between network metrics and
temperature variability. This modification makes temperature variability and network metrics
independent, limiting the capacity of network metrics to di�erentiate network class (see Figure
JA). But if we use the scaling from the empirical data (the scaling used in Michalska-Smith and
Allesina [12]), then we are adding the expectation of network class (i.e., we are conditioning on
network class since we have not lost this information). This new scaling (or conditioning) makes
temperature variability and network metrics potentially dependent conditional on network class
(see Figure JB).

Randomized 
 Network 
 metrics

Environmental 
 infromation

Network 
 class

Scheme (i). Randomized metrics are scaled by empirical metrics

Randomized 
 Network 
 metrics

Environmental 
 infromation

Network 
 class

Scheme (ii). Randomized metrics are scaled by randomized metrics

Figure J

Figure K shows that the two scaling procedures give di�erent PCA results. Figure KA reproduced
Figure 3B in the main text. Figure KB shows the results when scaled with scheme (i). Figure
KC shows the results when scaled with scheme (ii). As discussed above, the circles in KA
are considered as the trained models and the randomized networks in KC as treated as the
test dataset. Thus, the circles in Figure KC are exactly the same as the ones in KA. The
randomized networks in KC that are inside each circles are classified according. Note that while
the randomized networks cannot be separated in the two circles in KC, they are well-separated
along the second axis (a.k.a Dim2). The reason, as discussed above, is because the scaling
in Scheme (ii) causes the potential dependency between temperature variability and network
metrics when conditioned on the network classes.
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S7 Regression analysis on empirical networks

S7.1 Regression table

Table C: E�ect of temperature variability on network stability. The table summarizes the results of regressing temperature variability on
three di�erent metrics of network stability. All variables are scaled. The standard errors of the e�ects are reported in parentheses, and the ú symbol
represents the level of statistical significance. For all metrics of network stability (structural stability of feasibility, largest eigenvalue, and second
largest eigenvalue), the table shows that increasing temperature variability significantly decreases network stability for mutualistic communities while
it increases network stability for antagonistic communities. Regression are performed by including species richness and connectance as independent
variables. This table is formatted through Stargazer package [78].

Structural stability of feasibility Largest eigenvalue Second largest eigenvalue
mutualistic antagonistic mutualistic antagonistic mutualistic antagonistic

Temperature variability ≠0.389úúú 0.161ú 0.268úúú ≠0.177úúú 0.156úúú ≠0.281úúú

(0.127) (0.083) (0.055) (0.063) (0.053) (0.051)

Species richness ≠0.107 ≠2.428úúú 0.161úúú 3.112úúú 0.725úúú 2.422úúú

(0.078) (0.655) (0.034) (0.492) (0.033) (0.401)

Connectance 0.129 ≠0.250úú ≠0.638úúú ≠0.496úúú ≠0.225úúú 0.038
(0.085) (0.115) (0.037) (0.087) (0.036) (0.071)

Constant ≠0.042 ≠0.862úúú ≠0.056 1.168úúú ≠0.011 0.766úúú

(0.096) (0.142) (0.042) (0.107) (0.040) (0.087)

Observations 177 75 177 75 177 75
Adjusted R2 0.124 0.239 0.782 0.820 0.853 0.674
Residual Std. Error 1.018 (df = 173) 0.614 (df = 71) 0.442 (df = 173) 0.461 (df = 71) 0.428 (df = 173) 0.376 (df = 71)

Note:
úp<0.1; úúp<0.05; úúúp<0.01
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S7.2 Regression Model Diagnostics
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Figure L: Here we check the assumptions of the linear regression when the largest eigenvalue
(⁄1) is the dependent variable for antagonistic networks.
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Figure M: Here we check the assumptions of the linear regression when the largest eigenvalue
(⁄1) is the dependent variable for mutualistic networks.
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Figure N: Here we check the assumptions of the linear regression when the second largest
eigenvalue (⁄2) is the dependent variable for antagonistic networks.
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Figure O: Here we check the assumptions of the linear regression when the second largest
eigenvalue (⁄2) is the dependent variable for mutualistic networks.
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Figure P: Here we check the assumptions of the linear regression when the structural stability
(�) is the dependent variable for antagonistic networks.
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Figure Q: Here we check the assumptions of the linear regression when the structural stability
(�) is the dependent variable for mutualistic networks.
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S8 Robustness check of regression analysis on empirical net-
works

S8.1 Structural stability of feasibility

Table D: Regression table (similar to Table 1) of structural stability of feasibility on mutualistic
networks generated over di�erent models.

Structural stability of feasibility
mutualistic

Temeprature seasonality ≠0.524úúú ≠0.411úúú ≠0.389úúú

(0.116) (0.126) (0.127)

Species richness ≠0.154úú ≠0.107 ≠0.189úú

(0.072) (0.078) (0.075)

Connectance 0.129 0.158ú

(0.085) (0.086)

Constant ≠0.120 ≠0.058 ≠0.042 0.133ú

(0.092) (0.095) (0.096) (0.079)

Observations 177 177 177 177
R2 0.105 0.128 0.139 0.092
Adjusted R2 0.100 0.118 0.124 0.082

Note:
úp<0.1; úúp<0.05; úúúp<0.01
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Table E: Regression table (similar to Table 1) of structural stability of feasibility on antagonistic
networks generated over di�erent models.

Structural stability of feasibility
antagonistic

Temperature seasonality 0.265úúú 0.162ú 0.161ú

(0.082) (0.086) (0.083)

Species richness ≠1.425úúú ≠2.428úúú ≠2.793úúú

(0.475) (0.655) (0.639)

Connectance ≠0.250úú ≠0.251úú

(0.115) (0.118)

Constant ≠0.507úúú ≠0.702úúú ≠0.862úúú ≠0.778úúú

(0.112) (0.125) (0.142) (0.138)

Observations 75 75 75 75
R2 0.125 0.222 0.270 0.232
Adjusted R2 0.113 0.200 0.239 0.211

Note:
úp<0.1; úúp<0.05; úúúp<0.01
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S8.2 Largest eigenvalue

Table F: Regression table (similar to Table 1) of largest eigenvalue on mutualistic networks
generated over di�erent models.

Largest eigenvalue
mutualistic

Temperature seasonality 0.662úúú 0.375úúú 0.268úúú

(0.094) (0.090) (0.055)

Species richness 0.390úúú 0.161úúú 0.217úúú

(0.051) (0.034) (0.034)

Connectance ≠0.638úúú ≠0.658úúú

(0.037) (0.039)

Constant 0.179úú 0.023 ≠0.056 ≠0.176úúú

(0.075) (0.068) (0.042) (0.035)

Observations 177 177 177 177
R2 0.221 0.414 0.786 0.756
Adjusted R2 0.216 0.407 0.782 0.754

Note:
úp<0.1; úúp<0.05; úúúp<0.01

Table G: Regression table (similar to Table 1) of largest eigenvalue on antagonistic networks
generated over di�erent models.

Largest eigenvalue
antagonistic

Temperature seasonality ≠0.547úúú ≠0.175úú ≠0.177úúú

(0.120) (0.075) (0.063)

Species richness 5.101úúú 3.112úúú 3.514úúú

(0.417) (0.492) (0.493)

Connectance ≠0.496úúú ≠0.495úúú

(0.087) (0.091)

Constant 0.785úúú 1.484úúú 1.168úúú 1.075úúú

(0.163) (0.110) (0.107) (0.107)

Observations 75 75 75 75
R2 0.223 0.747 0.827 0.808
Adjusted R2 0.212 0.740 0.820 0.802

Note:
úp<0.1; úúp<0.05; úúúp<0.01
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S8.3 Second largest eigenvalue

Table H: Regression table (similar to Table 1) of second largest eigenvalue on mutualistic networks
generated over di�erent models.

Second Largest eigenvalue
mutualistic

Temperature seasonality 0.788úúú 0.194úúú 0.156úúú

(0.110) (0.059) (0.053)

Species richness 0.806úúú 0.725úúú 0.758úúú

(0.033) (0.033) (0.031)

Connectance ≠0.225úúú ≠0.237úúú

(0.036) (0.036)

Constant 0.340úúú 0.017 ≠0.011 ≠0.081úú

(0.088) (0.044) (0.040) (0.033)

Observations 177 177 177 177
R2 0.225 0.822 0.855 0.848
Adjusted R2 0.221 0.820 0.853 0.846

Note:
úp<0.1; úúp<0.05; úúúp<0.01

Table I: Regression table (similar to Table 1) of second largest eigenvalue on antagonistic networks
generated over di�erent models.

Second Largest eigenvalue
antagonistic

Temperature seasonality ≠0.446úúú ≠0.281úúú ≠0.281úúú

(0.064) (0.051) (0.051)

Species richness 2.271úúú 2.422úúú 3.060úúú

(0.282) (0.401) (0.455)

Connectance 0.038 0.039
(0.071) (0.084)

Constant 0.431úúú 0.742úúú 0.766úúú 0.619úúú

(0.087) (0.074) (0.087) (0.098)

Observations 75 75 75 75
R2 0.403 0.686 0.687 0.554
Adjusted R2 0.395 0.677 0.674 0.542

Note:
úp<0.1; úúp<0.05; úúúp<0.01
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S9 Regression analysis on randomized networks

S9.1 Erdös-Rényi randomization

Table J: Regression table on Erd�s-Rényi randomized networks
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S9.2 Configuration randomization

Table K: Regression table (similar to Table 1) on configuration randomized networks

St
ru

ct
ur

al
st

ab
ili

ty
of

fe
as

ib
ili

ty
La

rg
es

t
ei

ge
nv

al
ue

Se
co

nd
la

rg
es

t
ei

ge
nv

al
ue

m
ut

ua
lis

tic
an

ta
go

ni
st

ic
m

ut
ua

lis
tic

an
ta

go
ni

st
ic

m
ut

ua
lis

tic
an

ta
go

ni
st

ic

Te
m

pe
ra

tu
re

se
as

on
al

ity
≠

0.
39

5úú
ú

0.
09

9
≠

0.
31

0úú
0.

04
5

0.
48

0úú
ú

≠
0.

11
5

(0
.1

26
)

(0
.0

72
)

(0
.1

33
)

(0
.0

87
)

(0
.1

01
)

(0
.0

77
)

Sp
ec

ie
s

ric
hn

es
s

≠
0.

07
4

≠
2.

08
1úú

ú
0.

01
1

≠
1.

20
7ú

0.
14

4úú
3.

32
8úú

ú

(0
.0

78
)

(0
.5

62
)

(0
.0

82
)

(0
.6

80
)

(0
.0

62
)

(0
.6

02
)

C
on

ne
ct

an
ce

0.
16

6ú
≠

0.
06

8
0.

21
9úú

0.
02

4
≠

0.
40

1úú
ú

0.
05

5
(0

.0
85

)
(0

.0
99

)
(0

.0
89

)
(0

.1
20

)
(0

.0
68

)
(0

.1
06

)

C
on

st
an

t
0.

01
1

≠
0.

89
3úú

ú
≠

0.
08

2
≠

0.
37

9úú
0.

07
5

0.
99

5úú
ú

(0
.0

95
)

(0
.1

22
)

(0
.1

00
)

(0
.1

48
)

(0
.0

76
)

(0
.1

31
)

O
bs

er
va

tio
ns

17
7

75
17

7
75

17
7

75
A

dj
us

te
d

R
2

0.
12

6
0.

29
3

0.
07

7
0.

09
3

0.
41

8
0.

50
1

N
o
te

:
ú p

<
0.

1;
úú

p<
0.

05
;úú

ú p
<

0.
01

S27


	Information of empirical networks
	Computation of network metrics
	Correlations among environmental variables
	Separability and scalability using other environmental variables
	Additional analysis on specificity
	Scaling in PCA
	Regression analysis on empirical networks
	Regression table
	Regression Model Diagnostics

	Robustness check of regression analysis on empirical networks
	Structural stability of feasibility
	Largest eigenvalue
	Second largest eigenvalue

	Regression analysis on randomized networks
	Erdös-Rényi randomization
	Configuration randomization


