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A Equivalent parameterizations

It is worth noting that several mathematically equivalent parameterizations have been used
to describe the LV dynamics of 2-competing species (Case, 2000). Yet, regardless of model
parameterization, the conditions leading to coexistence or priority e�ects are equivalent under
the Structural Approach. For example, in addition to the r formalism (Eq. 1) and MCT for-
malism (Eq. 4), the LV model can also be expressed in terms of carrying capacities (Vander-
meer, 1975). In this other parameterization—what is known as the K-formalism, the carrying
capacities Ki are made explicit in the model as

Y
__]

__[

dN1
dt

= N1
r1
K1

(K1 ≠ N1 ≠ a12N2)

dN2
dt

= N2
r2
K2

(K2 ≠ a21N1 ≠ N2).
(S1)

Recall that the carrying capacity Ki of species i is computed as Ki = ri/–ii. It corresponds
to the abundance at equilibrium when the species grows in the absence of competition strength.
Note that the carrying capacity is well defined only if ri > 0, i.e., the species can grow in
monoculture (Gabriel et al., 2005). To be equivalent to Eq. (1), the competition strength
must be standardized by the intraspecific competition, i.e., aij = –ij/–ii. Note that aij is tra-
ditionally called the niche overlap of species j on species i (Case, 2000). In the K-formalism,
the condition for coexistence (Eq. 2) reads as

fl <
K2
K1

Ú
a12
a21

<
1
fl

, (S2)

and the condition for priority e�ects reads as

fl >
K2
K1

Ú
a12
a21

>
1
fl

. (S3)

These two sets of inequalities are very similar to those in the r-formalism (Eqs. 2 and 3).
Notice that ri is replaced by Ki and Qj by aij . Replacing the new parametrization into Eqn.
5, the niche overlap is given by fl = Ô

a12a21, which reveals that the niche overlap fl defined in
MCT is, in fact, the geometric average of the niche overlap aij of the two competing species.

Thus, the representation of the dynamical behavior of the LV model can be drawn in the
2-dimensional space made by the species fitness (Ÿi = ri/

Ô
–ii–ij), the carrying capacities

(Ki = ri/aii), or the intrinsic growth rates (ri) (Case 1999; Fig. S1). These representations
in the space of intrinsic growth rates are the core concept behind the structural approach
(Saavedra et al., 2017b). That is, Figure S1 shows that all these representations are conceptu-
ally equivalent to describe the range (as an algebraic cone) of intrinsic growth rates leading to
a given qualitative behavior (either coexistence or priority e�ects).
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Figure S1: Space of intrinsic growth rates for coexistence and priority e�ects. The dynam-
ics correspond to the Lotka-Volterra model (Eq. 1). These panels represent the range of
intrinsic growth rates—species fitness (panels A and D), carrying capacities (panels B and
E), and intrinsic growth rates (panels C and F)—leading to coexistence or priority e�ects.
Whether we can be in the presence of coexistence or priority e�ects is determined by the
stability-instability inequality, i.e., –22/–12 > –21/–11 for coexistence (panels A and C) or
–22/–12 < –21/–11 for priority e�ects (panels D and F). The slopes (–21/–11 in green and
–22/–12 in purple) of the two lines determining the coexistence (or priority e�ects) cone are
computed from the competition strengths. Actually, these four panels are a simple geometric
representation of the inequalities expressed in Eqs. (2) and (3). The red line represents the
fitness equivalence line, and in dashed, its extension to priority e�ects.
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B Importance of intrinsic growth rates

In the MCT formalism (Eq. 4), intrinsic growth rates do not play any explicit role in either
feasibility nor stability. However, this is a special property of 2-species ODEs guaranteed by
the Poincaré–Bendixson theorem (Strogatz, 2014). Yet, a well-known counter-example to the
fact that intrinsic growth rates do impact the dynamics in other dimensions is the discrete
logistic growth dynamics of a single species,

Nt+1 = rNt(1 ≠ Nt), (S4)

where increasing the intrinsic growth rate r would move the system from staying at a fixed
equilibrium to a chaotic dynamics. Moreover, it is rather easy to show counter-examples in
systems with more than 2 species. For example, consider the following 4-species competi-
tion ODEs with fixed interaction matrix (written following MCT formalism). The governing
population dynamics are (Vano et al., 2006)

dN
dt

= diag(r)diag(N)(1 ≠

Q

ccca

1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1

R

dddbN). (S5)

where N = (N1, N2, N3, N4) is the vector of species abundances.

Figure S2A shows that the system exhibits chaotic behavior with intrinsic growth rates r =
(1, 0.72, 1.52, 1.27), Figure S2B shows that the system exhibits a point attractor with intrinsic
growth rates r = (0.1, 5.72, 1.53, 1.27), and Figure S2C shows that the system exhibits species
extinction with intrinsic growth rates r = (0.4, 0.01, 0.1, 2). This illustrates the importance of
intrinsic growth rates in population dynamics even under the MCT formalism.
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Figure S2: Intrinsic growth rates impact population dynamics. All the simulations are gov-
erned by the same initial conditions and the same interaction matrix, but the intrinsic grow
rates. Panel A exhibits chaotic behavior, Panel B exhibits a point attractor, and Panel C
exhibits species extinction. The x axis is on the log ratio.
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C Structural Approach and priority e�ects

The Structural Approach (SA) has been defined as the structural stability of coexistence
under changes in intrinsic growth rates (Saavedra et al., 2017b). Here, we show how SA can
be naturally extended to priority e�ects.

Theorem S1. The structural stability of priority e�ects under changes in intrinsic growth

rates can be computed as � = arccos Q1+Q2Ô
1+Q2

1
Ô

1+Q2
2

Proof. Criteria for stable coexistence is

Q1 <
r2
r1

<
1

Q2
(S6)

and the criteria for priority e�ects is

1
Q2

<
r2
r1

< Q1 (S7)

Thus, the transition from stable coexistence to priority e�ects can be seen as

1
Q2

‘æ Q1 (S8)

Q1 ‘æ 1
Q2

(S9)

With the triangulate equality that

tan – ≠ tan —

1 + tan – tan —
= 1/ tan — ≠ 1/ tan –

1 + 1/(tan – tan —) (S10)

This shows that the normalized solid angle � remains the same after the transition. With
elementary trigonometric transformation, we have the result shown in Fig. S3.
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Figure S3: Cartoon of the proof. The figure shows how the transformation alters the rela-
tive position of the structural stability region but keeps the size fixed. Panel A represents
coexistence, while Panel B represents priority e�ects.
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D Formal combination of MCT and SA

To simplify the derivation of the combination of MCT and SA, let us denote the fitness ratio
r2
r1

Ò
Q2
Q1

as „ and the ratio of intrinsic growth rates r2
r1

as µ.

D.1 Stabilizing mechanism and SA

Let us fix the fitness ratio „ as a positive constant. Then Q2 = „
2
µ

≠2
Q1, and the niche

overlap can be written as
fl =


Q1Q2 = „µ

≠1
Q1, (S11)

which implies that

cos � = fl(„≠2
µ

2 + 1)


1 + „≠2µ2fl2


fl2 + „≠2u2 . (S12)

Looking at the conditions in fl that increase � (the region of coexistence or priority e�ects)
we have

ˆ cos �
ˆfl

= „
≠2

µ
2!

1 ≠ fl
4"!

„
≠2

µ
2 + 1

"

(„≠2µ2 + fl2)3/2(„≠2µ2fl2 + 1)3/2 , which is
I

> 0, if fl < 1
< 0, if fl > 1,

. (S13)

which implies that � decreases as niche overlap fl increases under coexistence (fl < 1), and �
increases as niche overlap fl increases under priority e�ects (fl > 1.). Similarly, looking at the
conditions in µ that increase � we have

ˆ cos �
ˆµ

= „
≠2

µfl
!
fl

2 ≠ 1
"2!

„
≠2

µ
2 ≠ 1

"

(„≠2µ2 + fl2)3/2(„≠2µ2fl2 + 1)3/2 , which is
I

> 0, if Q1 > Q2
< 0, if Q1 < Q2,

. (S14)

Thus, when „
≠2

µ
2

> 1 (i.e., Q1 > Q2), � would increase if µ = r2
r1

decreases; and when
„

≠2
µ

2
< 1 (i.e., Q1 < Q2), � would increase if µ = r2

r1
increases. This pattern is the same

regardless of whether looking at coexistence or priority e�ects.

D.2 Equalizing mechanism and SA

Let us fix the niche overlap fl as a positive constant. Without loss of generality, we assume
that fitness ratio „ Ø 1. Then Q1 = flµ„

≠1
, Q2 = flµ

≠1
„. Unlike the stabilizing mechanism,

the equalizing mechanism is not always well-defined as feasibility is not always satisfied —
µ has to lie within the feasibility domain spanned by (Q1, 1) and (1, Q2). Hence, we define
� := 0 when feasibility is violated. Focusing on priority e�ects we have

cos � = fl(µ2 + „
2)


„2 + fl2µ2


µ2 + fl2„2 , where fl

≠1
µ

2
< „ < flµ

2 (S15)

Note that the condition fl
≠1

µ
2

< „ < flµ
2 is equivalent to the feasibility condition 1

Q1
< µ <

Q2. Similarly, for coexistence we have

cos � = fl(µ2 + „
2)


„2 + fl2µ2


µ2 + fl2„2 , where flµ

2
< „ < fl

≠1
µ

2 (S16)

Focusing only on non-trivial � (i.e., cos � ”= 1), the derivative of cos � is

ˆ cos �
ˆ„

= µ
2
fl

!
fl

2 ≠ 1
"2

„
!
„

2 ≠ µ
2"

(µ2fl2 + „2)3/2(µ2 + fl2„2)3/2 , (S17)
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which impels that � decreases when „ > µ and increases otherwise in both coexistence and
priority e�ects.

Furthermore, when � are fixed, then

„
2 =

µ
2 csc2(�)

3
2
!
fl

4 + 1
"

cos2(�) ≠ 4fl
2 +

Ô
2
!
fl

2 ≠ 1
"

cos(�)
Ò

fl4 + (fl2 + 1)2 cos(2�) ≠ 6fl2 + 1
4

4fl2 .

(S18)
The conditions above imply that Q1 and Q2 do not depend on µ. Note that in the extreme
case when � reaches its maximum (i.e., „ = µ, or, equivalently, Q1 = Q2), the maximum of �
is arccos

1
2fl

fl2+1

2
, which only depends on the niche overlap fl.
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E Ratios of intrinsic growth rates and maximum solid angle

Figure 4 shows that di�erent ratios of intrinsic growth rates r2/r1 can yield the same maxi-
mum solid angle �. While di�erent ratios of intrinsic growth rates r2/r1 would have the same
aggregated tolerance to random perturbations (i.e. �), they have di�erent tolerances to direc-
tional perturbations. Figure S4 shows the three ratios r2/r1 = 1, 2, 10 with their associated
maximum �. When r2/r1 = 1, the tolerances to directional perturbations (i.e. distances
to the boundaries) are similar. However, when r2/r1 increases, the tolerances to directional
perturbations shows a stronger trade-o�.
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Figure S4: Di�erent tolerances to directional perturbations with the same �. The two axes
denote the intrinsic growth rates of two species. The blue region denotes the feasibility do-
main. The black line denotes the ratio of intrinsic growth rates (values in upper-right). As
the ratio of intrinsic growth rates deviates more from 1, the system is more robust to pertur-
bation upon one boundary and less robust to perturbation upon the other boundary.
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F Annual plant model

This section discusses how to apply MCT and SA on an the annual plant model (Godoy &
Levine, 2014). A more detailed disucssion can be found in Godoy & Levine (2014); Godoy
et al. (2014); Saavedra et al. (2017b). The annual plant model reads as

dNi,t+1
dt

= (1 ≠ gi)siNi,t + gi⁄iNi,t

1 +
qn

j=1 –̃ijgjNj,t
, (S19)

where gi is the germination rate, si is the seed survival probability, ⁄i is the fecundity rate,
and –̃ij is the competition strength (relative reduction in per capita growth rate). After alge-
braic manipulation, the equilibrium N

ú
i can be expressed as a linear equation:

gi⁄

1 ≠ (1 ≠ gi)si
≠ 1 =

nÿ

j=1
–̃ijgjN

ú
j . (S20)

Then, Eq. 1 can be achieved via re-parametrization

ri := gi⁄

1 ≠ (1 ≠ gi)si
≠ 1 (S21)

–ij := –̃ijgj (S22)
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G Hypothesis testing for field data

Here we performed a hypothesis testing to show that there is a significant statistical tendency
to increase the feasibility domain � rather than increasing the fitness equivalence in the field
data (Figure 5B-C). Recall that the maximization of the former implies higher pressures
in intrinsic growth rates, while the maximization of the latter implies higher pressures in
competition strengths. Specifically, we established two hypotheses:

H0 : the tolerance to perturbation in competition strength is maximized (S23)
H1 : the tolerance to perturbation in intrinsic growth rates is maximized (S24)

(S25)

To formalize this problem, it is equivalent to ask whether points in Figure 5B-C are closer
to the fitness equivalence line or to the maximizing � line. Let us denote the distance to
the fitness equivalence line as d1 and the distance to the maximizing � line as d2. Then, the
hypotheses are equivalent to

H0 : d2/d1 < 1 (S26)
H1 : d2/d1 > 1 (S27)

Figure S5 shows the distribution of the log ratios of distances d2/d1 in the empirical data
set. Then, we ran Wilcoxon signed-rank test on the two hypotheses. For coexistence, we
found that H0 has a p value of 1 and H1 has a p value of 3.049 ◊ 10≠7. Similalry, for priority
e�ects, we found that H0 has a p value of 1, and H0 has a p of value 0.0001009. Therefore, we
rejected the null hypothesis, and concluded there is a tendency to maximize the tolerance to
perturbations in intrinsic growth rates.
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Figure S5: This figure shows the distribution of the ratio of distances d2/d1 for coexistence
(in blue) and priority e�ects (in orange) in the annual plants assemblages. The dotted red line
denotes the equal distance d1 = d2. The ratio of distances is plotted on log ratios.
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