
Coexistence holes characterize the 
assembly and disassembly of multispecies 
systems

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41559-021-01462-8



Coexistence holes characterize the assembly
and disassembly of multispecies systems
Supplementary Notes

Marco Tulio Angulo1 �, Aaron Kelley2, Luis Montejano2, Chuliang Song3,4,5, and Serguei
Saavedra3 ��

1CONACyT - Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, México.
2Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, México.
3Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
4Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1 Canada.
5Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2 Canada
correspondence to: �mangulo@im.unam.mx or ��sersaa@mit.edu

12 March 2021

Contents

1 Definition of assembly and disassembly hypergraphs 1

2 Coexistence holes in small ecological systems with classic dynamics 3

3 Identifying holes in hypergraphs using homology theory 4
3.1 An homology theory for arbitrary hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 The constructed homology captures exactly all holes . . . . . . . . . . . . . . . . . . . 7
3.3 An algorithm for calculating the homology of arbitrary hypergraphs . . . . . . . . . . . 8

4 Constructing assembly hypergraphs from population dynamics models 11
4.1 Estimating assembly and disassembly hypergraphs using the Lotka-Volterra model. . . . 11
4.2 Permanence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Estimating assembly hypergraphs from general population dynamics models. . . . . . . 13

5 Assembly and disassembly holes in systems with Lotka-Volterra dynamics 14
5.1 Increasing the “complexity” of an interaction matrix generates more skeletons . . . . . . 14
5.2 Constructing an ensemble of random LV models . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Random species interactions very likely generate assembly and disassembly holes . . . . 15
5.4 Disassembly strongly influences assembly, but not vice versa . . . . . . . . . . . . . . . 16
5.5 The probability of observing holes changes with their dimension, and the ensemble pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Analysis of empirical ecological systems. 20
6.1 Description of the empirical datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Disassembly strongly determines assembly in empirical systems, but not vice versa . . . 22

7 Calculating assembly hypergraphs using only co-culture experiments. 24
7.1 Calculating the assembly of Drosophila melanogaster gut microbiota. . . . . . . . . . . 25

0



1. Definition of assembly and disassembly hypergraphs
We consider ecological systems where individuals have been organized into S species (or strains, or taxa,
or functional groups, or in any other meaningful organization). Let V D f1; 2; � � � ; Sg denote the pool
of species. Note that the set of all different species collections that can be obtained from this pool is the
power set 2V —the collection of all subsets of V. Here, we use as convention that sets do not contain
repeated elements (e.g., the set f2; 1; 2g is not allowed).

Given a species collection ˙ 2 2V, its coexistence is a dichotomy: the species either coexist together
or not. Thus, we formalize species coexistence as follows:

Definition 1. The coexistence function of an ecological system is a function c W 2V ! f0; 1g.

For any species collection ˙ 2 2V, we interpret the condition c.˙/ D 1 as “species in ˙ coexist”,
and c.˙/ D 0 as “species in S do not coexist”. If ˙ contains a single species, then coexistence is
interpreted as “surviving in isolation”. For mathematical completeness, for the empty set ; 2 2V, we
define c.;/ D 0.

From Definition 1, the coexistence of species in an ecological system is described by the coexistence
relations that one species has with all other members of the species poola. The assembly hypergraph of
the system fully captures all those coexistence relations:

Definition 2. Given a coexistence function c, the assembly hypergraph Hc of the ecological system is
the pair Hc D .V; Hc/, where

Hc WD f˙ 2 2V
jc.˙/ D 1g

is the set of all species collections that coexist.

Note that Hc � 2V. When the coexistence function c is clear from the context, we write H instead
of Hc . Hypergraphs are well-studied combinatorial objects in mathematics [2], generalizing the notion
of graphs to encode relations between an arbitrary number of components. Recently, hypergraphs are
finding important applications across the sciences (see, e.g., [3–7]).

In a hypergraph H D .V; H/, the set V 2 H are its vertices, in our case corresponding to isolated
species. The collection H 2 H are its hyperedges, which for the assembly hypergraph characterize all
species collections that coexist. When clear from the context, we also write h 2 H to denote a hyperdge
h of the hypergraph H . The dimension of a hyperedge h is dim.h/ WD jhj�1, where jhj is the cardinality
of the set h (e.g, for h D Œ1; 2; 3� its dimension is dim h D 2). The dimension of a hypergraph is defined
as dim.H/ D maxh2H dim.h/.

In the Main Text, we introduce the notion of the disassembly hypergraph D.H/ associated to an
assembly hypergraph H . To formally define this notion, we first need the following concept:

Definition 3. The minimal simplicial complex K.H/ containing the hypergraph H is the simplicial
complex with vertex set V and simplices K defined as

K.H/ D f� � Vj� � � for some � 2 H g:

Recall that a simplicial complex is a collection of subsets of V that is closed under inclusion (i.e.,
if � 2 K and � � � then � 2 K). In other words, for a simplicial complex K, each element � 2 K

contains all its boundaries. Any simplicial complex is a hypergraph, but not all hypergraphs are simplicial
complex.

Next, for a hypergraph H , we define its its missing boundary M.H/ as

M.H/ WD K.H/ n H:

aFormally, coexistence is a relation. To analyze all those relations, it is necessary to apply an analysis situs [1] —an analysis of the “situation” describing
the coexistence relation that one species with the rest. Such analysis requires a mathematical object whose geometry disregards angles nor distances. Actually,
what could be the distance or angle between two species that coexist? Therefore, this geometry, encoded by the assembly/disassembly hypergraph of an
ecological system, considers only relations of coexistence between species. Thus the analysis situs of species coexistence corresponds to the topological
analysis of the assembly hypergraph.
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In words, the elements of M.H/ are the missing boundaries in the hyperedges of H . The missing bound-
ary of a hypergraph is another hypergraph over the same vertex set. Note that K.H/ is uniquely deter-
mined given H . This implies that the missing boundary M.H/ is well-defined for any hypergraph.

Finally, we define:

Definition 4. The disassembly hypergraph D.H/ of the hypergraph H D .V; H/ is the pair .V; D.H//

where
D.H/ D M.H/ [ fh 2 H such that jhj D 1g:

In words, the disassembly hypergraph D.H/ of H contains all missing boundaries of H , together with
all species that survive in isolation. Note that, given H , the disassembly hypergraph D.H/ is unique.
With the exception of zero-dimensional hyperedges, any hyperedge d 2 D.H/ is a sub-collection that
does not coexist dissembled from of a species collection h 2 H that coexist. In other words, given a
species collection that coexist h 2 H , a sub-collection d � h obtained by “disassembling” h will belong
to D.H/ if d does not coexist.
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2. Coexistence holes in small ecological systems with classic dynamics
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Supplementary Figure 1 | Coexistence in Tilman’s consumer-resource model. Simulation results for S D 3 species and M D 2

resources with parameters as in Figure 1 of the Main Text. a. Case of two 0-dimensional assembly holes. b. Case of one 0-dimensional
assembly hole. c. Case of one 1-dimensional assembly hole.
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3. Identifying holes in hypergraphs using homology theory

3.1 An homology theory for arbitrary hypergraphs

Consider a set of vertices V D f1; 2; � � � ; Sg. Recall that a hypergraph H is a collection of subset fhig

where hi � V. Each subset h 2 H is called a hyperedge.

Example 1. For S D 3 vertices, an example of a hypergraph with six hyperedges is

H D
�
Œ1�; Œ2�; Œ3�; Œ1; 2�; Œ2; 3�; Œ1; 2; 3�

�
:

To study the structure of hypergraphs, and in particular to identify their holes, we need to endow them
with the structure of a topological space. We do this by embedding the hypergraph into an S -dimensional
space. First, we associate to each vertex in V one unit vector of RS . That is, the vertex Œ1� is associated
to the vector e1 D .1; 0; � � � ; 0/ 2 RS , the vertex Œ2� to the vector e2 D .0; 1; 0; � � � ; 0/ 2 RS , and so
on. Second, a hyperedge h 2 H is associated to the relative interior of the simplex spanned by the unit
vectors associated to the vertices it contains, a process we denote as relint.h/. In this way, the embedding
of the hypergraph is formalized as follows:

Definition 5. The geometric realization jH j � RS of the hypergraph H is

jH j WD [h2H relint.h/:

Example 2. For the hypergraph of Example 1 with S D 3 vertices, its geometric realization (in R3) is
shown in Fig. 2a.

In general, it is difficult to visualize the geometric realization of hypergraphs if S � 4. To manage this
difficulty, we will often use a linear equivalent embedding of jH j in some lower n-dimensional space, for
some n � S . We illustrate this process in the following example:

Example 3. Consider the hypergraph

H D
�
Œ1�; Œ2�; Œ3�; Œ4�; Œ1; 2�; Œ2; 4�; Œ3; 4�; Œ1; 2; 3�; Œ2; 3; 4�

�
:

The geometric realization of this hypergraph lives in R4. However, we can embed this geometric realiza-
tion into the n D 2-dimensional space as shown in Fig. 2b.

The geometric realization of a hypergraph is now a subset of the Euclidean space, with each of its
hyperedges forming a simplex of RS . In particular, the holes of the hypergraph are represented by the
elements of the homology of jH j. However, from a mathematical viewpoint, such a topological space is
difficult to analyze because it is neither open nor closed in RS . This fact implies that for calculating the
holes of jH j it is necessary to use the notion of singular homology, which is in general very challenging
to calculate. To circumvent this challenge, we built an strategy that allows us to calculate these holes
more easily using simplicial homology.

Our strategy is to construct the homology groups (or holes) as follows. We construct our homology by
imagining we “explode” the hypergraph into its hyperedges. For example, the hypergraph of Fig. 2b is
“exploded” into its hypereges in Fig. 2c. We will now connect back these hyperedges ensuring we keep
the original structure of the hypergraph. That is, in this process of connecting back the hyperedges, not
all connections will be allowed. To characterize those connections that are allowed, we define the notion
of k-simplex of an hypergraph:

Definition 6. A k-simplex of an hypergraph H is a collection � D fh1; h2; � � � ; hkC1g such that:

(i) hi 2 H for all i , and

(ii) hi � hiC1.

In words, a k-simplex is a collection of k hyperedges of H ordered by inclusion. We illustrate this
concept in the following example:
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Supplementary Figure 2 | Homology for hypergraphs. Figure shows two examples of hypergraphs (panels a and b), illustrating the
construction of their homology theory.

Example 4. Consider the hypergraph shown in Fig. 2b. A 1-simplex in this hypergraph is

� D
˚
Œ1�; Œ1; 2; 3�

	
:

This simplex is “valid” because Œ1� � Œ1; 2; 3�. This 1-simplex can be visualized as a link connecting the
hyperedge Œ1� and the hyperedge Œ1; 2; 3�, see top of Fig. 2d. By contrast, note that fŒ3�; Œ1; 2�g is not a
1-simplex because these two hyperedges cannot be ordered by inclusion.

Example 5. A 2-simplex of the hypergraph in Fig. 2b is � D fŒ1�; Œ1; 2�; Œ1; 2; 3�g, see bottom part of Fig.
2d. There are no bigger simplices for this hypergraph.

We can put together connections between groups of k hyperedges by “adding together” different k-
simplices. This idea is formalized by the notion of a k-chain, which we define as below:

Definition 7. A k-chain of the hypergraph H is the formal sum

c D
X

q

nq�q;

where each �q is a k-simplex of H , and coefficient nq 2 f0; 1g with addition defined modulo 2.

Recall that modulo-2 addition means that 1 C 1 D 0. In other words, “repeated” hyperedges cancel
out each other. We illustrate the above notion in the following example:

Example 6. For the hypergraph of Fig. 2b, a 1-chain is

c D
˚
Œ1�; Œ1; 2; 3�

	
C

˚
Œ2�; Œ2; 3�

	
:

Chains in a hypergraph can be visualized as connecting its pieces. For example, the above chain describes
the two pieces shown as orange edges in Fig. 2f.

From the definition above, we can construct the k-th chain group of the hypergraph H , denoted by
hCk.H/; Ci. This is the group of all k-chains with “C” denoting addition modulo 2.
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The final notion that we need is that of boundary, defined as follows:

Definition 8. The boundary of a k-simplex � D fh1; h2; � � � ; hkC1g of H is the .k � 1/-th chain

@k� D

kC1X
iD1

� n hi D

kC1X
iD1

fh1; h2; � � � ; hkC1g n hi ; k � 0:

By completeness, we define C�1.H/ as the trivial group f0g, and the 0-boundary @0 W C0.H/ !

C�1.H/ as the zero epimorphism.
Therefore, the boundary is an operator that decreases the order, i.e., @k W Ck.H/ ! Ck�1.H/. By

linearity, we extend this definition to chains as follows: if c D
P

q nq�q is a k-chain then its boundary is
defined as

@kc WD
X

q

nq @k�q:

Example 7. Consider the 1-simplex � D
˚
Œ1�; Œ1; 2; 3�

	
of Fig. 2d. Its boundary is

@1� D
˚
Œ1�; Œ1; 2; 3�

	
n Œ1� C

˚
Œ1�; Œ1; 2; 3�

	
n Œ1; 2; 3� D Œ1� C Œ1; 2; 3�;

see Fig. 2g. For the chain c D
˚
Œ1�; Œ1; 2; 3�

	
C

˚
Œ2�; Œ2; 3�

	
of Fig. 2f, its boundary is

@1c D Œ1� C Œ1; 2; 3� C Œ2� C Œ2; 3�;

see Fig. 2h.

The so-called fundamental boundary property states that @k@kC1 D 0. Note that this property
applies using to above definition of boundary. In particular, this property implies that the boundary of a
cycle is zero. We illustrate this latter fact in the following example:

Example 8. For the hypergraph of Fig. 2b consider the 1-chain

c D
˚
Œ1�; Œ1; 2; 3�

	
C

˚
Œ1; 2; 3�; Œ1; 2�

	
C

˚
Œ1; 2�; Œ1�

	
:

This chain starts and ends in the hyperedge Œ1�, see Fig. 2i. Its boundary is

@1c D Œ1� C Œ1; 2; 3� C Œ1; 2; 3� C Œ1; 2� C Œ1; 2� C Œ1� D 0;

which is empty because addition modulo 2-addition cancels repeated hyperedges, see Fig. 2j.

The idea is now to use cycles to detect holes. Intuitively, a cycle could be the boundary of some chain,
in which case it is a “filled” cycle. Cycles could also be the boundary of no chain —and in particular,
of no hyperedge— implying they are “empty”. Consequently, “empty cycles” characterize the boundary
of a hole. On the other hand, note that different cycles may encircle the same hole. Therefore, to count
the number of different holes using cycles, it is necessary to construct an equivalence class of all cycles
encircling the same hole.

To make the above ideas operative, we use the boundary operator to characterizes two key subgroups
of the k-th chain group Ck.H/ of a hypergraph H :

Definition 9.

(i) The k-th cycle group Zk is

Zk D ker @k WD fc 2 Ckj@kc D ;g:

(ii) The k-th boundary group Bk is

Bk D im @kC1 WD fc 2 Ckj∃d 2 CkC1 such that c D @kC1dg:
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Supplementary Figure 3 | Defining the homology of hypergraphs.

A chain c 2 Bk is the boundary of some higher-dimensional chain d 2 CkC1. Therefore, such a
k-chain c is a k-boundary or a bounding cycle. Cycles that are not in Bk are non-bounding cycles.
Therefore, bounding cycles bound higher-dimensional chains so they are “filled cycles”. Non-bounding
cycles are “empty cycles”. Note also that, since @k@kC1 D 0, it follows that Bk � Zk � Ck , as illustrated
in Fig. 3a.

It turns out that both subgroups Zk and Bk are normal (because they are abelian), allowing the con-
struction of quotient spaces. To illustrate the implications of this fact, consider again the hypergraph of
Fig. 2b. Let b 2 B1 and z 2 Z1 be bounding- and non-bounding cycles of Fig. 3b and Fig. 3c, respec-
tively. Glueing both cycles results in the cycle z Cb of Fig. 3d. Crucially, note that z Cb is homologous
to z. Namely, we can retract z C b along the solid triangle fŒ2; 4�; Œ2; 3; 4�; Œ4�; Œ3; 4�g to obtain exactly
z. In this sense, there exists only one cycle of the form z C B1.

The above idea is formalized by the notion of quotient space Z1=B1. Extending this idea from k D 1

to an arbitrary k � 1 leads to the definition of homology groups:

Definition 10. The k-th homology group Hk is

Hk D Zk=Bk D ker @k= im @kC1:

Thus, if z1 D z2 C Bk for some z1; z2 2 Zk , we say that the empty cycles z1 and z2 are homologous.
The number of “different” empty cycles provide a characterization of the “holes” of the space. This is

formalized by the Betti numbers. Specifically, we have:

Definition 11. The k-th Betti number ˇk of the hypergraph H is ˇk D rank Hk.

Therefore, the k-th Betti number corresponds to the number of k-dimensional holes of H . In partic-
ular, ˇ0 provides the number of connected components of H .

3.2 The constructed homology captures exactly all holes

To finish, we prove that the above constructed homology theory will capture exactly all holes of the
hypergraph. With this aim, let us first define:

Definition 12. For a hypergraph H , its associated subdivision S.H/ is the hypergraph such that:

(i) S.H/ has one vertex for each hyperedge of H .

(ii) S.H/ contains as hyperedges all the k-simplices of H for k � 0.

Note that S.H/ is by construction a simplicial complex since any subset of a k-simplex is also a
k-simplex. Moreover, the geometric realization of S.H/ satisfies jS.H/j � jH j by embedding every
vertex of h 2 S.H/ as the barycenter of the relint.h/ in jH j. We illustrate this latter fact in the following
example:

Example 9. For the hypergraph of Fig. 4a, its subdivision is shown in Fig. 4b. Note the subdivision
S.H/ is contained in H .
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Note that our notion of subdivision is analogous to the well-known first barycentric subdivision[8] of
a simplicial complex.

Our main result proves that the constructed homology captures exactly all holes of the geometric
realization of an hypergraph. That is, any hole in the geometric realization of a hypergraph corresponds to
a “empty cycle” family, and every “empty cycle” family corresponds to a hole in the geometric realization
of the hypergraph. Mathematically, such property means that the homology of a hypergraph and its
subdivision are identical:

Theorem 1. The homology of H and S.H/ are identical.

Proof. To prove the claim, it is sufficient to construct a strong deformation retraction

r W jH j ! jS.H/j:

Suppose V D Œn� D fQ0; Q1; : : : ; Qng, where we identify Qi 2 Œn� with the point .0; : : : ; 1; : : : ; 0/ 2 RnC1

with all coordinates 0 except the .i C 1/-th coordinate which is 1. So, the hypergraph H is contained
in the simplex � with vertices V . Furthermore, its realization j�j is the convex hull of the set of points
fQ0; Q1; : : : ; Qng 2 RnC1.

Define F D � n H and F .i/ as the subset of F consistent of those elements of size i . Furthermore,
define Li the subcomplex of �0 (the first baricentric subdivision of the simplex �) generated be the
following vertices of �0 (remember that the vertices of �0 are subsets of V ):

2V
n [j >iF

.i/:

Finally, define Zi , the finite collection of vertices of the simplicial complex �0, as follows: Zi D fO� j

� 2 F .i/g, 1 � i � m.
The following is easy to verify:

1. L0 D H 0,

2. If � is an .m � 1/-simplex, then Lm D �0

3. Li�1 is a subsimplex of Li , and jLi j n jLi�1j is a pairwise disjoint union of a finite (possible empty)
collection of open cones with apices in Zi , 1 � i � m.

Define the strong deformation retraction along the lines of the cones

ri W jLi j n Zi ! jLi�1j

In fact,
ri.jLi j n Zi/ D [�2F .i/@� � ��

where @� is the subcomplex of �0 which is the boundary of � and �� is a simplex of �0 with vertices
fv�1

; : : : ; v�p
g, where � < v�1

< � � � < v�p
and v�j

2 Li�1, 1 � j � p:

Note that v�j
2 � and its size is greater than i , and since it is not in Li�1, then v�j

… F . Consequently,

ri.jLi j n Zi/ � ri.jLi j n [�2F .i/ relint j� j/ � [�2F .i/ [
p
1 relint j��j

j � jLi�1j \ jH j

and then ri.jLi j \ jH j/ � jLi�1j \ jH j.
This allows to define r W .jLmj\ jH j/ D jH j ! .jL0j\ jH j/ D jH 0j as the composition rm ı � � � ı r1.

Note that ri jW jLi j \ jH j ! jLi�1j \ jH j is defined along the lines of the cones, then r is also a strong
deformation retraction.

□

3.3 An algorithm for calculating the homology of arbitrary hypergraphs

Theorem 1 guarantees that that we can calculate the homology of any hypergraph H by calculating the
homology of its subdivision S.H/, which is a simplicial complex. Here we use this fact to implement an
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Supplementary Figure 4 | Analyzing the homology of hypergraphs. a. The hypergraph H D�
Œ1�; Œ2�; Œ3�; Œ4�; Œ1; 2�; Œ2; 4�; Œ3; 4�; Œ1; 2; 3�; Œ2; 3; 4�

�
. b. Its subdivision S.H/. Note this is a simplicial complex. c. Inclusion

graph G.H/ of H , used to compute the subdivision of the graph. d. Another hypergraph without holes. e. Subdivision for the
hypergraph of panel d. f. Inclusion graph for the hypergraph of panel d.

efficient algorithm to calculate the homology of arbitrary hypergraph leveraging on existing algorithms
for calculating the homology of simplicial complexes via their Vietoris-Rips complexes.

First, note that the notion of hypergraph subdivision in Definition 12 can be understood abstractly as
replacing each hyperedge by a vertex in a new hypergraph, and then connecting these new vertices ac-
cording to the inclusion of hyperedges they represent. We illustrate this fact in the elementary hypergraph
H of Fig. 4a. The corresponding subdivision S.H/ is shown in Fig. 4b. This subdivision contains nine
vertices, one per hyperedge of H . For example, the vertex 9 in S.H/ is associated to the hyperedge
Œ2; 3; 4� in H , and so on. The hyperedges of S.H/ are obtained by inclusion. For example, the hyperedge
Œ1; 8� 2 S.H/ exists because Œ1� � Œ1; 2; 3� in the hyperdges of H .

The above observation is useful because it allows to implement the subdivision in two steps:

1. Build the inclusion graph. This is a directed graph G.H/ containing the same vertex set V0 as
S.H/ (i.e., one per hyperedge of H ). A directed edge .v0

i ! v0
j / is included if the hyperedges

hi ; hj 2 H associated to v0
i ; v0

j 2 V0 satisfy hj � hi . In Fig. 4c, we illustrate the construction of
the inclusion graph for the hypergraph of Fig. 4a.

2. Calculate the Vietoris-Rips complex associated to the undirected inclusion graph. Namely, let
Gu.H/ denote the inclusion graph G.H/ with the direction of edges removed. Then, the Vietoris-
Rips complex is a simplicial complex with vertices V0 and with one simplex � for each complete
subgraph of Gu.H/.

For the inclusion graph of Fig. 4c, note that its Vietoris-Rips complex is precisely the hypergraph
subdivision of Fig. 4b. This is not a coincidence, as we can prove the following:

Proposition 1. Let K.H/ denote the Vietoris-Rips complex built from G.H/. Then S.H/ D K.H/.

Proof. The proof follows by observing that, by construction, each simplex of � 2 S.H/ is a complete
subgraph of G.H/. Namely, let � 2 S.H/ be a simplex in the subdivision. Let Œh1; h2; � � � ; hn� be the
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hyperedges of H associated to this simplex. By Definition 12, it follows that h1 � h2 � � � � � hn.
Therefore, the associated vertices h1; h2; � � � ; h2 form a complete subgraph in G.H/. On the other hand,
if h1; h2; � � � ; h2 is a complete subgraph of G.H/, then they are ordered by inclusion as h1 � h2 � � � � �

hn, and hence they should be a simplex in S.H/. □

Proposition 1 guarantees that our subdivision algorithm is correct in the sense that it calculates the
subdivision of any hypergraph. We provide the Julia function

hypergraph_subdivision(H, simplification = false),

returning the subdivision of the hypergraph H. The options for simplification are true or false. Choosing
simplification = true will return the simplicial complex S.H/ by calculating the Vietoris-Rips complex
of the inclusion graph. Choosing simplification = false will return the inclusion graph G.H/ only.
Furthermore, the relevance of calculating the hypergraph subdivision through a Vietoris-Rips complex
is that it allows us to efficiently calculate the homology of the subdivision, as we discuss in the next
subsection.

We emphasize that, despite both an hypergraph H and its inclusion graph G.H/ contain exactly the
same information, it is not easy or immediate for humans to identify the holes by looking only at G.H/.
Indeed, it is the geometric information that is added to hypergraph when it is (geometrically) realized
that allows us to detect and most easily conceptualize the presence of holes. We illustrate this fact in the
following example:

Example 10. For the particular hypergraph H of this example (Fig. 4a), there is a one-dimensional
hole between species Œ2; 3�, which is made evident in its subdivision S.H/ (Fig. 4b). The corresponding
inclusion graph G.H/ is shown in Fig. 4c, where vertices are hyperedges (e.g., species collections that
coexist), and edges connect two vertices if they can be ordered by inclusion (i.e., one is contained in the
other). From this inclusion hypergraph, one may be tempted to conclude that the hole exists because
there is a cycle fŒ2; 9�; Œ9; 3�; Œ3; 8�; Œ8; 2�g, which is precisely the boundary of the hole (orange cycle in
Fig. 4c, note the direction of the edges is not considered). The challenge here is then to conclude if such
bounding cycle is “empty” or “not”. To understand the difficulty of this challenge, in Fig. 4f we show the
inclusion graph in the case the bounding cycle is actually filled. Despite the bounding cycle remains in the
inclusion graph (orange), it is not obvious by looking only to the graph what changed from Fig. 4c to Fig.
4f. By contrast, it the additional geometric structure added to the hypergraph and its subdivision allow us
to immediately conclude that the bounding cycle is filled in the latter case (Fig. 4d,e). In this sense, the
inclusion graph G.H/ is a more “primitive” representation compared to the (geometrical realization) of
a hypergraph H .
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4. Constructing assembly hypergraphs from population dynamics models
Here we start considering ecological systems with population dynamics described by the Lotka Volterra
(LV) model. The LV is the classical population dynamics model that has been successfully applied to
model a very diverse class of ecological systems, from terrestrial, lake and marine foodwebs, to plant
ecological systems [9, 10] and microbial communities [11, 12] in the human body. Compared to other
population dynamics models, calculating the assembly hypergraph for LV models is computationally
more efficient because analytical conditions for coexistence exist. In Section 4.3, we discuss using more
general population dynamics to construct assembly hypergraphs.

4.1 Estimating assembly and disassembly hypergraphs using the Lotka-Volterra model.

In vector form, the Lotka-Volterra model for S species is

dx.t/

dt
D x.t/ ˇ ŒAx.t/ C r�; x.0/ D x0; (S1)

where x.t/ D .x1.t/; � � � ; xN .t//⊺ 2 RS
�0 and xi.t/ is the abundance of the i -th species at time t � 0.

Above, x ˇ v denotes the entry wise multiplication of vectors x; v 2 RS . The parameters of the GLV
model are A 2 RS�S and r 2 RS , representing the interaction matrix and the intrinsic growth rate of
species, respectively.

We assume we are given the parameters .A; r/ capturing the population dynamics of the ecological
system. These parameters can be inferred from experimental data using system identification techniques.
Then, the objective is to build the assembly hypergraph by using the Eq. (S1) to predict if certain species
collection ˙ 2 2V coexists or not. To test for coexistence, we considered the criterion of permanence
[13–15]. In the following two sub-subsection we describe such criterion in details. Overall, we our Julia
package contains all functionalities needed to build the assembly hypergraph from a LV model using the
following function:

assembly_hypergraphGLV(A, r; method, regularization, z_tolerance, iterations).

This function returns an array of arrays H containing the hyperedges of the assembly hypergraph (i.e.,
species collections that coexist). Above, the parameters:

1. A, r are the interaction matrix A and intrinsic growth rate vector r of the ecological system.

2. method specifies the criterion for testing coexistence. The function accepts two criteria: “perma-
nence” or “localstabilitiy".

3. The remaining three parameters, are accepted only for the permanence criterion:

• regularization = reg adds the negative random values Uniform(-reg, 0) to the diagonal of
A. This is useful to obtain bounded abundances when the A matrix has zero diagonal and
some species are autotrophs in the environment (i.e., ri > 0). By default, the function uses
regularization = 0.

• z_tolerance sets the tolerance for solving the linear program that characterizes permanence.
By default, the function uses z_tolerance = -1e-60.

• iterations is the number of iterations used to solve the linear program that characterizes per-
manence. By default, the function uses iterations= 5e4.

In our results we used the default parameters. From the assembly hypergraph H , our Julia package
allows constructing the disassembly hypergraph D using the function

disassembly_hypergraph(H).
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4.2 Permanence.

Permanence has been used as a criterion for coexistence in various seminal studies [13–15]. Mathemat-
ically, permanence is defined by the existence of an attractive set in the interior of the state space. To
introduce this notion, consider an ecological system of S species and let V D f1; 2; � � � ; Sg the set of all
species.

Definition 13. [16, pp. 160]. The species collection ˙ 2 2V is permanent if there exists a compact set
˝ � R

j˙ j

>0 in the interior of the state space such that all orbits in the interior end up in ˝.

Let xi.t/ denote the abundance of the i -th species at time t � 0. Permanence means that, whenever
xi.0/ > 0 for all i 2 ˙ and xj .0/ D 0 for all j … ˙ , there exists constants 0 < ı � D < 1 such that

ı < lim inf
t!1

xi.t/ � lim sup
t!1

xi.t/ � D; ∀i 2 ˙:

In words, permanence means that if some species are initially present, then the population dynamics will
not lead to their extinction.

Consider a species collection ˙ 2 2V and let A˙ 2 Rj˙ j�j˙ j and r˙ 2 Rj˙ j denote the submatrix of
A and subvector of r obtained by considering only the species in ˙ . In our work, we used the following
conditions to determine the permanence of a species collection ˙ :

1. A necessary condition for permanence is the existence of a feasible interior equilibrium [16, pp.
169]. Namely, the existence of a point x�

˙ 2 R
j˙ j

>0 such that A˙x�
˙ C r˙ D 0.

2. A sufficient condition for permanence is the existence of vector h˙ 2 R
jS j

�0 such that

h
⊺
˙ .r˙ C A˙x�

˙/ > 0; ∀x�
˙ 2 E.˙/:

Above, E.˙/ is the set of non-negative boundary equilibria of the species collection ˙ , i.e., E.S/ D

fx� 2 R
j˙ j

�0 jA˙x� C r˙ D 0g. The above conditions is usually referred as Jansen’s criterion of
permanence [17] (see also [16, pp. 176]).
We note that Jansen’s criterion is a necessary and sufficient for permanence when j˙ j � 3, and it is
only sufficient for j˙ j � 4.

Jansen’s criterion has been a popular in applications because it can be written as a linear program
[13, 14]. Namely, Let n�

˙ D jE.˙/j and denote by X�
˙ D Œx�

1 j � � � jx�
n�� 2 Rn�n� the matrix obtained

by concatenating the equilibria of E.˙/ by columns, with x�
i 2 Rj˙ j. Then, Jansen’s criterion can be

rewritten as the linear program:

solve h⊺A˙X�
˙ C h⊺rS˙1⊺ > 0; subject to h 2 R

j˙ j

�0 :

Above, 1⊺ D .1; 1; � � � ; 1/ 2 Rn�
S . For implementation purposes, we rewrite the above linear program as

solve h⊺A˙X�
˙ C h⊺r˙1⊺ C z1⊺ � 0; subject to h 2 R

j˙ j

�0 ; (S2)

where z < 0 is a small constant.
We built a Julia function to calculate the permanence of a species collection ˙ with parameters

.A˙ ; r˙/:

is_GLVpermanent(Asigma, rsigma; regularization, z_tolerance, iterations).

This function returns true if conditions 1 and 2 above are satisfied, and returns false if at least one of
those two conditions is not satisfied. The parameters of this function are:

• regularization = reg adds the negative random values Uniform(-reg, 0) to the diagonal of A. This
is useful to obtain bounded abundances when the A matrix has zero diagonal and some species are
autotrophs in the environment (i.e., ri > 0). By default, the function uses regularization = 0.
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• z_tolerance sets the value for the variable z in Eq. (S2). By default, the function uses z_tolerance
= -1e-60.

• iterations is the maximum number of iterations used to solve the linear program of Eq. (S2). By
default, the function uses iterations= 5e4.

4.3 Estimating assembly hypergraphs from general population dynamics models.

In principle, more general population dynamics model can better capture the coexistence of ecological
systems. Compared to the LV equations of Eq. (S1), other models may use different functional responses
[18, 19] to describe the interactions between species (such as replacing the term xixj by the Holling Type
II term xixj =.� C xj /), and may contain higher order interactions [20] (term like xixj xk). Similarly,
in addition to the species dynamics, models may incorporate the dynamics of available resources (i.e.,
abiotic conditions), such as in the classical MacArthur’s consumer-resource model [21]. In this sense, a
rather general class of population dynamics modeling the abundance of S species x.t/ 2 RS

�0 and M

resources R.t/ 2 RM
�0 correspond to the differential equations:

dx.t/

dt
D x.t/ ˇ f�

�
x.t/; R.t/

�
; x.0/ D x0I

dR.t/

dt
D R.t/ ˇ g

�
x.t/; R.t/

�
; R.0/ D R0:

(S3)

Above f� W RN
�0 �RM

�0 ! RN and g W RN
�0 �RM

�0 ! RM are functions parametrized by the parameters
.�; /. The pair ff� ; gg characterize the population dynamics of the ecological system. For example,
MacArthur’s model is obtained by using the affine functions

f�.x; R/ D �1R C �2; g.x; R/ D �1R C �2x C 3:

Here we assume we are given such a pair ff� ; gg with their parameters adjusted to represent an
empirical ecological system. For certain pairs and under additional hypothesis, the coexistence of species
can be analytically derived. One example is MacArthur’s model with time-scale separation between
resources and species, where the existence of a unique interior equilibrium of species implies its global
stability [22]. In general, however, analytically characterizing coexistence of a species collection from
an arbitrary pair ff� ; gg is very challenging. Therefore, for such general models, permanence needs to
be numerically estimated. The basic idea is to numerically solve Eqs. (S3) for an ensemble of initial
conditions .x0; R0/. Then, we calculate the fraction of the resulting trajectories that enter and remain in
an interior compact set for a long enough simulation time interval.
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5. Assembly and disassembly holes in systems with Lotka-Volterra dynamics

5.1 Increasing the “complexity” of an interaction matrix generates more skeletons

In Fig. 3 of the Main Text, we studied how the assembly and disassembly skeletons are generated by a
pair .A; r/. In particular, Fig. 3 contains the skeletons generated by the following hypothetical interaction
matrix:

A D

0BBBBB@
�1: 0:250537 0: �0:198409 0:327808 0:

0: �1: �0:0825464 0: 0: 0:

0: 0: �1: 0: �0:294949 0:

0:210027 0:0230585 0:0537077 �1: 0:608267 0:100475

0: 0:502158 �0:156564 0: �1: 0:287838

0:394669 0: �0:257042 0: 0: �1:

1CCCCCA (S4)

We can increase the “complexity” of this interaction matrix in two ways: (1) increasing the strength
of the interspecific interactions already present, or (2) increasing the number of non-zero interspecific
interaction. For example, we can increase the complexity of Eq. (S4) by increasing its interspecific
strengths as follows:

A D

0BBBBB@
�1: 1:24247 0: �0:74856 4:05051 0:

0: �1: �0:506785 0: 0: 0:

0: 0: �1: 0: �1:59741 0:

1:61705 0:605579 0:483881 �1: 10:0131 0:6016

0: 2:92263 �0:794511 0: �1: 2:11763

4:54829 0: �2:83429 0: 0: �1:

1CCCCCA :

Note this interaction matrix has the same zeros as the original one (Supplementary Fig. 5a). Increas-
ing the complexity in this way increases the number of possible assembly and disassembly skeletons
(Supplementary Fig. 5b).

As mentioned above, we can also increase the complexity of the interaction matrix by increasing
the number of non-zero interspecific interactions between species. For example, we can increase the
complexity of Eq. (S4) as follows:

A D

0BBBBB@
�1: 0:250537 �0:257042 �0:198409 0:327808 0:250537

0:0825464 �1: �0:0825464 0:100475 0:608267 �0:210027

0:0825464 �0:198409 �1: �0:100475 �0:294949 �0:327808

0:210027 0:0230585 0:0537077 �1: 0:608267 0:100475

0:327808 0:502158 �0:156564 0:210027 �1: 0:287838

0:394669 �0:394669 �0:257042 0:250537 0:198409 �1:

1CCCCCA :

Note this interaction matrix “fills” the zero entries of the original one (Supplementary Fig. 5c). Increas-
ing the complexity in this way also increases the number of possible assembly and disassembly holes
(Supplementary Fig. 5d).

5.2 Constructing an ensemble of random LV models

To systematically analyze how coexistence holes emerge in ecological systems with the LV dynamics, we
generated random LV models using the methodology developed in previous studies (see, e.g., [23, 24]).
More precisely:

1. For the interaction matrix A D .aij /, its non-diagonal entries aij are constructed by sampling as

aij � Bernoulli.CA/ Normal.0; �A/; i ¤ j:

Above, CA 2 Œ0; 1� characterizes the connectance of the interaction matrix —controlling the frac-
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Supplementary Figure 5 | Changing the complexity of the interaction matrix generates more assembly and disassembly skeletons. a.
An interaction matrix with identical zero-pattern as in Eq. (S4), but with higher inter-species interaction strengths. b. Increasing
the interaction strength generated a larger diversity of assembly and disassembly skeletons. c. An interaction matrix with identical
interspecific interaction strengths as in panel a, but with more non-zero interactions. d. Increasing the connectivity generated a larger
diversity of assembly and disassembly skeletons.

tion of zero entries— and �A � 0 is the characteristic interspecific interaction strength between
species. Diagonal entries are set to ai i D �1 for i D 1; � � � ; S .

2. For the intrinsic growth rate vector r , we considered a randomization where its 2-norm is maintained
but its direction is chosen uniformly at random over a sphere. More precisely, given a vector r0 2 RS ,
we first generate a vector v 2 RS with vi � Normal.0; 1/. The randomized version of r0 is then

r D kr0k2

v

kvk2

:

Recall that, by sampling vi � Normal.0; 1/, the vector v=kvk2 is uniformly distributed over S -
dimensional unit sphere.

3. For the intrinsic growth rate vector r , we also considered a randomization where growth rates are
samples uniformly at random over the positive sector of the units sphere. This was done by inde-
pendently sampling vi � Normal.0; 1/ for i D 1; � � � ; N , and rejecting the sample if at least one
vi < 0. Then, we built

r D kr0k2

v

kvk2

:

5.3 Random species interactions very likely generate assembly and disassembly holes

To analyze how likely to observe coexistence holes in in LV ecological systems, we quantified the prob-
ability of observing assembly/diassembly holes in our ensemble of random LV ecological systems. For
this, we considered ecological systems of S species. We constructed m > 0 random matrices A for each
set of parameters .CA; �A/ 2 Œ0; 1� � Œ0; 3�. For each random matrix, we generated ` > 0 vectors r

uniformly at random with unit norm. Finally, we calculated the corresponding assembly and disassembly
holes. We say that matrix A has assembly holes (or disassembly holes) if, with at least one of those r vec-
tors, the interaction matrix generates assembly holes of some dimension (or disassembly holes of some
dimension). Then, for a pair .CA; �A/, the expected probability of finding assembly holes (or disassembly
holes) is the fraction of the m random matrices A for those parameters that have at least one assembly
hole (or disassembly holes).

Figure 3d of the Main Text shows the results of the above methodology using S D 8 species, m D 20

random matrices, and ` D 100 random vectors. For assembly holes, we find that the expected probability
of finding assembly holes is higher than 0.8 if the connectivity satisfies CA > 0:4 and the typical inter-
specific interaction strength satisfies �A > 0:5. This region where assembly holes are likely occupies a
large portion of the parameter space, indicating that assembly holes are rather common. We find a similar
result for disassembly holes, but in this case the region where disassembly holes are very likely is even
larger. Overall, these results show that the presence of assembly and disassembly holes is the norm rather
than the exception in random LV models.
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5.4 Disassembly strongly influences assembly, but not vice versa

Because assembly and disassembly skeletons occur simultaneously, it is important to understand their
co-occurrence. For this purpose, we calculated the joint probability of observing a pair of assembly
and disassembly skeletons. The joint probability can be represented by a bipartite graph where vertices
correspond to skeletons. Supplementary Fig. 6a illustrates this graph for the system with the interaction
matrix of Eq. (S4) when choosing the intrinsic growth rate vector uniformly at random over the unit
sphere. Here, the size of a node corresponds to the marginal probability of observing the given skeleton,
and the strength of edges between nodes corresponds to the joint probability of observing a given pair of
assembly and a disassembly skeletons. Supplementary Fig. 6a shows that by looking at the size of nodes
in the bipartite graph generated by our hypothetical interaction matrix A, there is less uncertainty about
which assembly skeleton will occur than in the disassembly skeleton. This result is expected because
the probability distribution of assembly skeletons is heavily concentrated compared to the more uniform
distribution observed for disassembly skeletons.

Moreover, the links of the illustrative bipartite graph generated above show that if we are given infor-
mation about the observed disassembly skeleton, the uncertainty of occurrence for the assembly skeleton
strongly decreases. This can be confirmed because most disassembly skeletons have few strong links
(Supplementary Fig. 6a). Recall that the stronger the link, the higher the conditional probability. How-
ever, these patters are not present in the other direction. In other words, in this example, the disassembly
skeleton strongly determines the assembly skeleton, but not vice versa. Note that, despite the assembly
hypergraph determines the disassembly hypergraph (i.e., D D D.H/), there is an infinite number of
assembly hypergraphs with the same assembly skeleton. This means that there is also an infinite number
of disassembly hypergraphs associated to same assembly skeleton. Consequently, this implies that the
observation that disassembly skeletons determine assembly skeletons is not a simple byproduct of the
construction of the assembly/disassembly hypergraphs.

We can further quantify the findings above by calculating the marginal and conditional entropies of
assembly and disassembly skeletons—recall that higher entropy means larger uncertainty. As expected
from our hypothetical example, Supplementary Fig. 6b shows that the marginal entropy of the assembly
skeletons is much lower than the marginal entropy of the disassembly skeletons. By conditioning assem-
bly on disassembly or disassembly on assembly, the entropy of the conditional probability distribution
decreases—uncertainty decrease because we are given additional information. We can then calculate
the relative change in entropy due to conditioning as: 1�(marginal entropy)/(conditional entropy). In
our hypothetical example, we found that the entropy in the assembly reduces about 55% when we know
the disassembly, whereas knowing the assembly reduces the entropy in the disassembly only about 6%
(Supplementary Fig. 6c). This result is aligned with the previous observations derived from the bipartite
graph in Supplementary Fig. 6a, confirming that disassembly strongly determines assembly, but not vice
versa. We found this same behavior when systematically analyzing a random ensemble of LV models
(Supplementary Fig. 6d).

In our hypothetical example, when the intrinsic growth rate vector is restricted to the positive sector
of the unit sphere, we qualitatively find the same behavior: disassembly strongly influence assembly but
not viceversa (Supplementary Fig. 6e). Yet, we find lower marginal and conditional entropies for both
assembly and disassembly (Supplementary Fig. 6f). This is expected, since the domain of values for the
intrinsic growth rates is smaller. In this case, the entropy in the assembly reduces about 17% when we
know the disassembly, whereas knowing the assembly reduces the entropy in the disassembly only about
0.1% (Supplementary Fig. 6g). We found this same behavior when systematically analyzing a random
ensemble of LV models (Supplementary Fig. 6h).

5.5 The probability of observing holes changes with their dimension, and the ensemble parame-
ters

Here we study how the probability of observing assembly/disassembly holes of different dimension
change with the parameters of the ensemble of random LV models. Specifically, we generate an en-
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Supplementary Figure 6 | Disassembly strongly influences assembly, but not vice versa. Panels a-d consider a growth rate vector
uniformly chosen over the unit sphere. a. Bipartite graph between assembly and disassembly skeletons generated by the interaction
matrix of Eq. (S4). Here, the size of the node is proportional to the marginal probability, and the weight of a link is proportional to
the joint probability. b. Marginal and conditional entropies obtained for the interaction matrix of Eq. (S4). c. Relative decrease in the
entropy due to conditioning obtained for the interaction matrix of Eq. (S4). d. Relative decrease in entropy for an ensemble of 20; 000

random LV models of S D 8 species. For each ecological system, we calculate its assembly (H ). and disassembly (D) skeletons.
Left panel shows the conditional entropy H.H jD/ of an assembly skeleton given a disassembly skeleton, for all ecological systems
with the same combination of parameters .C; �A/. Right panel shows the corresponding conditional entropy H.DjH/. The conditional
entropy H.H jD/ is higher than H.DjH/. A low conditional entropy H.DjH/ indicates that the disassembly skeleton is determined
by the assembly skeleton. Similarly, the large conditional entropy H.DjH/ indicates that the disassembly skeleton is NOT strongly
determined by the assembly skeleton. e. to h. Same as panels a to c, except the growth rate vector is uniformly chosen over the
positive sector of the unit sphere.
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Supplementary Figure 7 | Coexistence holes in the Lotka-Volterra model with random parameters. Results are for a system of S D 8

species. Panels a and b are for positive growth rates over the unit sphere. Panels c and d for arbitrary growth over the unit sphere. In
all panels, colors correspond to the expected number of holes of different dimension, obtained from 10,000 pairs .A; r/ generated with
the same value of .�A; CA/. For a hypergraph H , its density is jH j=.2S � 1/, namely the proportion of hyperedges it has compared
the maximum number of hyperedges that it can have.
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semble random LV models for S D 8 species with parameters .CA; �A/ 2 Œ0 W 0:1 W 1� � Œ0 W 0:1 W 3�,
sampling 10,000 random matrices at each step. For each of those matrices, we generate a random intrinsic
growth vector either chosen uniformly at random over the positive sector of the unit sphere (Supplemen-
tary Fig. 7a,b), or uniformly at random over the whole unit sphere (Supplementary Fig. 7c,d). Then,
for each generated pair .A; r/ we calculate their assembly/disassembly hypergraphs, and the number of
assembly/disassembly holes of different dimensions. Here we also calculate three additional statistics
of the hypergraphs: their density (number of hyperedges they have divided by 2S � 1), their dimension
(maximum number of elements in their hyperedges), and the different skeletons generated when A is
fixed and r randomly changes. Note the hypergraph dimension characterizes the limits of coexistence.

As expected, the limits of coexistence (i.e., the dimension of the assembly hypegraph) increase when
�A or CA are decrease. Below these limits, additional structure exists as characterized by assembly and
disassembly holes. For a wide region in the parameter plane .�A; CA/, we find only one 0-dimensional
assembly hole, meaning that there are no species groups where coexistence is totally mutually exclu-
sive. Also, 0-dimensional disassembly holes are more likely at low values of �A or CA, indicating that
a low “complexity” �ACA is more likely to produce the simple closed-under-inclusion assembly rule.
For higher dimension, the expected number of assembly and disassembly holes depends on the �A, CA,
and the hole’s dimension. In general, this expected number of holes decrease with their dimension. The
maximum number of low-dimensional assembly holes occurs at higher values of �A and CA compared to
high-dimensional assembly holes. This result is reasonable because higher-dimensional assembly holes
require that bigger species collections can coexist. We also find that the assembly hypergraph tends to be
denser than the disassembly hypergraph, and that the systems tends to adopt a larger number of different
disassembly skeletons compared to assembly skeletons. Results are similar when the intrinsic growth rate
vector r can take positive and negative values, except that more 0-dimensional assembly holes appear and
fewer high-dimensional coexistence holes occur.
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6. Analysis of empirical ecological systems.

6.1 Description of the empirical datasets

We analyzed five experimental microbial communities to identify the presence of coexistence holes. The
list of species in each ecological system are shown in Supplementary Tables 1 to 5. For each community,
we used the empirical values of the interaction matrix A 2 RS�S and intrinsic growth-rate vectors r 2 RS

previously inferred and validated in each study.

ID species name

1 Paramecium blirsaria
2 Paramecium aurelia
3 Paramecium caudatum
4 Blepharisnia sp

Supplementary Table 1 | Species list for Vandermeer system [25].

ID species name

1 Enterobacter aerogenes
2 Pseudomonas aurantiaca
3 Pseudomonas chlororaphis
4 Pseudomonas citronellolis
5 Pseudomonas fluorescens
6 Pseudomonas putida
7 Pseudomonas veronii
8 Serratia marcescens

Supplementary Table 2 | Species list for Friedman system [26]

ID species name

1 Barnesiella
2 undefined_genus_of_Lachnospiraceae
3 unclassified_Lachnospiraceae
4 Other
5 Blautia
6 undefined_genus_of_unclassified_Mollicutes
7 Akkermansia
8 Coprobacillus
9 Clostridium_difficile
10 Enterococcus
11 undefined_genus_of_Enterobacteriaceae

Supplementary Table 3 | Species list for Stein system [11].

ID species name

1 Blautia hydrogenotrophica
2 Collinsella aerofaciens
3 Bacteroides uniformis
4 Prevotella copri
5 Bacteroides ovatus
6 Bacteroides vulgatus
7 Bacteroides thetaiotaomicron
8 Eggerthella lenta
9 Faecalibacterium prausnitzii
10 Clostridium hiranonis
11 Desulfovibrio piger
12 Eubacterium rectale

Supplementary Table 4 | Species list for Venturelli system [12].
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ID species name

1 Clostridium hiranonis
2 Clostridium difficile
3 Proteus mirabilis
4 Clostridium scindens
5 Ruminococcus obeum
6 Clostridium ramosum
7 Bacteroides ovatus
8 Akkermansia muciniphila
9 Parabacteroides distasonis
10 Bacteroides fragilis
11 Bacteroides vulgatus
12 Klebsiella oxytoca
13 Roseburia hominis
14 Escherichia coli

Supplementary Table 5 | Species list for the MDSine system [27].
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Supplementary Figure 8 | Empirical species interactions generate assembly and disassembly holes. Results are for each empirical
interaction matrix and 5; 000 skeletons generated by choosing the intrinsic growth-rate vector uniformly at random over the
positive section of the unit sphere. bf a. to e. Number of assembly and disassembly skeletons generated by each empirical
interaction matrix. f. to j. Grey dots show the number of low- and high-dimensional holes observed in the 5,000 random
skeletons obtained by using the empirical interaction matrices (strength of color is proportional to the probability of occurrence).
Color dots show the empirical skeletons obtained by the empirical interaction matrix and the empirical intrinsic growth-rate
vector.

6.2 Disassembly strongly determines assembly in empirical systems, but not vice versa

For each of the five empirical interaction matrices A, we followed the methodology of Supplementary
Note S4.5 to calculate the entropy of the disassembly and assembly skeletons, and the relative decrease
in the entropy obtained after conditioning. The results are shown in Supplementary Fig. 9. As in the case
of unstructured ecological systems, for all five empirical ecological systems we find that conditioning on
the disassembly reduces more strongly the entropy (i.e., the uncertainty about the assembly) compared to
conditioning on the assembly.
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Supplementary Figure 9 | Relation between assembly and disassembly in empirical ecological systems.
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7. Calculating assembly hypergraphs using only co-culture experiments.
Here we consider available an experimental datasetD containing the co-culture experiments for all local
communities with different species collections. More precisely, we consider that each experiment has
associated an initial species collection z 2 f0; 1gS as well as the corresponding final abundance x 2 RS

of species (e.g., steady-state abundance of species). Each pair .z; x/ is called a sample, and the dataset
D contains those samples D D f.z; x/g. We assume that multiple experiments may exists for the same
species collection, which we call repetitions.

Under the above conditions, the problem is to introduce a suitable coexistence function. Note that
solving this problem is challenging because of multiple sources of variability that are intrinsic to co-
culture experiments. These source include:

a. Measurement errors. These include cases when a species that is present in the local community is
measured as not present (e.g., because its abundance is below the detection threshold of the mea-
surement devices). Here, it may also happen that a species that is absent from a local community is
measured as present (e.g., misidentifications, such as those produced with 16S rRNA gene sequenc-
ing for bacteria identification [28]).

b. Differences in the environment between experiments. The same species collection may coexist in
some environment, and not coexist in other environments. Here, we understand environment as
everything necessary to calculate the vital rates of species’s individuals [29], such as the abundance
of different species, the density of resources or predators, or other abiotic factors. The coexistance
of a species collection depends on those conditions, but they cannot be identical between co-culture
experiments, affecting their reproducibility.

To address the above limitations, given experimental dataD is given, we consider the following method
to determine species coexistence:

1. Choose: a noise level " 2 Œ0; 1�, and a minimal probability of coexistence p� 2 .0; 1/.

2. Let Xi be the vector containing the abundance xi of species i in all samples x 2 D with zi D 1.
Calculate the " quantile qi."/ for Xi . Abundances xi � qi."/ are considered to be zero, but measured
as non-zero due to experimental errors. Here, choosing " D 0 corresponds to assuming that there
exist no experimental errors.

3. Construct the thresholded dataset D" as follows. For each sample x 2 D, calculate the thresholded
sample x" 2 RS

�0 using

x";i D

�
0 if jxi j � qi."/;

xi otherwise;

for i D 1; � � � ; N . Build D" by collecting the pairs f.z; x"/g.

4. For each different initial species collection ˙ 2 f0; 1gS , do:

i) Collect in X˙
" � RN all x" 2 D" for which z D ˙ . The set X˙

" contains the thresholded
abundances for all the repetitions of species collection ˙ .

ii) Compute the species collection Oz D sign ı abs.x"/ 2 f0; 1gN of each x" 2 X˙
" , and build the

set Z˙
" D fOzg � f0; 1gN .

iii) Let

1. Oz D ˙/ D

�
1 if Oz D ˙;

0 otherwise;
;

be the indicator function. Compute

p.˙/ D
1

jZ˙
" j

X
Oz2Z˙

"

1. Oz D ˙/;
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Supplementary Figure 10 | Analyzing coexistence in co-culture experiments of the core Drosophila melangoster gut microbiota. a-e.
Histograms for the abundance of each species across all samples. Blue vertical lines correspond to the quantiles qi ."/ generated for
" D 0:1. f. Fraction of repetitions in which each species collection coexists. Dashed line indicates p� D 0:7.

where jZ˙
" j is the cardinality of Z˙

" . Here, p.˙/ 2 Œ0; 1� quantifies the probability (over
repetitions of the dataset) that the species collection ˙ coexists.

iii) Finally, for each species collection ˙ , define the coexistence function as c.˙/ D 1 if p.˙/ �

p�, and c.˙/ D 0 otherwise.

7.1 Calculating the assembly of Drosophila melanogaster gut microbiota.

We illustrate the above method using an experimental dataset with the assemblage of the 25 � 1 D 31

local communities of the S D 5 “core” species of Drosophila melanogaster fruit fly gut microbiota [30].
In this dataset, species are numbered as:

1. Lactobacillus plantarum; 2. Lactobacillus brevis; 3. Acetobacter pasteurianus; 4. Aceto-
bacter tropicalis; and 5. Acetobacter orientalis.

Abundance of species was measured by counting colony-forming units (CFUs). In total, this dataset
contains 47 repetitions for the abundance of each possible species collection, resulting in 1449 samples.

First, we compute the vectors Xi , i D 1; � � � ; N , containing the abundance of the i -th species in all
samples that originally contained it. These five vectors can be visualized as histograms displaying the
distribution of abundances that each species takes, see Fig. 10a-e. Next we choose " D 0:1, leading to
the quantiles

q."/ D .53657; 11133; 0; 0; 39210/:

Namely, for this choice, 90% of the abundances in Xi are larger than qi."/ (blue vertical lines in Fig. 10).
Actually, these quantiles can be compared to the maximum abundances of each species: .537000; 668000

,1:47 � 106; 1:31 � 106; 706000/. Next we compute the probabilities p.˙/; ˙ 2 2V for each species
collection (Fig. 10f). Finally, choosing p� D 0:7, we select those species collections S that for which
p.S/ � p� to obtain the assembly hypergraph:

H D
˚
f1g; f2g; f3g; f4g; f5g; f1; 3g; f1; 4g; f1; 5g; f2; 3g; f2; 4g; f2; 5g; f1; 4; 5g; f2; 4; 5g

	
:

In Fig. 11 we visualize the assembly hypergraph H of the core Drosophila melanogaster gut micro-
biota for different combinations of parameters ."; p�/.
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Supplementary Figure 11 | Assembly hypergraphs of the core Drosophila melanogaster gut microbiota. Coexistence hypergraphs ob-
tained by choosing different combinations of noise level " parameter and minimal probability of coexistence across repetitions p�.
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