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This appendix provides additional information about each of our models.
In each case, we discuss how ITV could be put into the model. We do an
invasion analysis analytically. We additionally lay out how each model was
studied using simulations, and provide the supplementary figures referenced
in the main text.

To do an invasion analysis using the modern coexistence theory frame-
work, we need to define the sensitivity to competition, βj (Chesson, 2003;
Barabás et al., 2018). Defining βj requires defining a competition term in
the model, Cj(t). When this is done, sensitivity to competition is defined as

βj =
∂rj(t)

∂Cj(t)
(S1)

when species j is at equilibrium (or βj =
∂λj(t)
∂Cj(t)

in models of spatial variation)

(Chesson, 1994). We outline how this is done in each model.
All of the invasion simulations used to generate each figure followed a

similar procedure. We selected a range which we wanted ITV to vary over.
We then broke that range into 350 separate values. For each possible value
of σ2T1 and σ2T2 (3502 = 122, 500 paired values total), we calculated the
invader growth rate of each species when the other was the invader. Each
simulation was performed differently, and we explain our procedure for each
model below. For the relative nonlinearity model, we also calculated βi for
each parameter value (in the other three models, it was constant). This
allowed us to calculate the stabilizing mechanism and fitness difference for
each (σ2T1, σ

2
T2) pair. To draw the contour plots, we would select a particular

value for σ2T1, and determine all values of σ2T2 for which the stabilizing
mechanism or fitness difference was below the contour for a given σ2T2, but
above it for the next value of σ2T2. A small black dot was placed on the figure
at each of these locations. We did this for every value of σ2T1. We then did
the converse of this, determining which values of σ2T1 moved our stabilizing
mechanism or fitness-difference over the critical value for each σ2T2.

Section S1 Model 1: Variation-independent mech-
anism

First we analyze the resource partitioning model, which represents niche
partitioning at equilibrium. We assume that species compete over a variety
of resources, Rh(t) (for resource h at time t). Each species has a Type
1 functional response, and species j captures resources h with attack rate
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aj(h). Consuming any resource allows individuals of each species to produce
w offspring. Individuals die at rate δ. Thus, when there are q resources, the
model for species j’s population dynamics is

dNj(t)

dt
= Nj(t)

(
q∑

h=1

aj(h)wRh(t)−m

)
. (S2)

We model resource density as growing logistically in the absence of con-
sumers (to carrying capacity K),

dRh(t)

dt
= Rh(t)

1− Rh(t)

K
−

2∑
j=1

aj(h)Nj(t)

 . (S3)

For this analysis, we assume that resources can be divided along a one-
dimensional niche axis x, such that an individual’s attack rate on resource h
will be similar to its attack rate on resource h+ε (for small ε). In our analysis,
aj(h) was represented by either a normal or a uniform distribution. Using
the formalism in MacArthur (1970), and assuming that resources all have
identical attributes, we solve the mean per-capita competition coefficient as:

αjk =

∫
aj(h)ak(h)dh. (S4)

This will differ slightly, based on the form of aj(h). When we do this, we
can define an intrinsic growth rate rj which allows us to write our model as
a Lotka-Volterra model:

dNj(t)

dt
= Nj(t)rj

(
1−

2∑
k=1

αkjNk(t)

)
. (S5)

Section S1.1 Deriving the competition coefficients, αjk, with
ITV

For this section, we will assume that an individual’s attack rate is based on
a Gaussian distribution, such that an individual with optimal resource use
µj on resource h as

aj(h) =
1√

2πσ2I

e
−

(h−µj)
2

2σ2
I (S6)
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where σI determines dietary width of an individual. If species j shows ITV
in µj , then an individual with trait T will have attack rate

aj(T, h) =
1√

2πσ2I

e
−

(h−(µ∗j+T ))2

2σ2
I . (S7)

We will assume that T is normally distributed, with mean 0 and variance
σ2Tj ; we will write the pdf as pj(T ). Thus, we can calculate the average
resource uptake for a species as

aj(h) =

∫
ajh(T, h)pj(T )dT (S8)

This is a normal distribution with mean µ∗j and variance σ2I + σ2Tj . Thus,
the competition coefficients are:

αjk =

∫
aj(h)ak(h)dh

=
1√

2π(2σ2I + σ2Tj + σ2Tk)
e
−

(h−(µ∗j+T ))2

4σ2
I
+2σ2

Tj
+2σ2

Tk .
(S9)

Section S1.2 Invasion analysis

Next we derive a more general invasion analysis (i.e. one that does not
depend on the form of aj(T, h)). Below, however, we use equation S9 to
determine specifics for the Gaussian aj(T, h). The equation governing a
species is

1

Nj(t)

dNj(t)

dt
= rj

(
1−

2∑
k=1

αkjNk(t)

)
. (S10)

The right-hand side of this equation is the growth rate of the species, rj(t)
(Miller and Klausmeier, 2017). If there is only resident species in the system,
then it will be at equilibrium at density Nr(t) = 1/αrr. Thus, an invader’s
growth rate will be

ri(t) = βi

(
1− αri

αrr

)
. (S11)

We could write this further as a resident-invader comparison, though we find
it does not add any intuition (as rr(t) = 0, and it is obvious what is causing
the invader to have a positive or negative growth rate).
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To define the sensitivity to competition, βj , we define competition as
Cj(t) =

∑2
k=1 αkjNk(t). Thus, βj is simply the intrinsic growth rate of a

species, rj . With this, the stabilizing mechanism in this system is

∆ρ = 1− 1

2

(
α12

α11
+
α21

α22

)
, (S12)

and the fitness advantage for species 1 is

∆ρ1 −∆ρ =
1

2

(
α12

α11
− α21

α22

)
, (S13)

We can examine the effects of ITV on stability and fitness differences in
the Gaussian model by substituting our derivation of αjk (equation S9) into
the above equations. We find that the stabilizing mechanism is

∆ρ = 1−

(√
σ2T1 + σ2I +

√
σ2T2 + σ2I

)
e
− (µ∗1−µ

∗
2)

2

2(σ2T1
+σ2

T2
+2σ2

I)

√
2
√
σ2T1 + σ2T2 + 2σ2I

(S14)

and the fitness advantage for species 1 is

∆ρ1 −∆ρ =

(√
σ2T1 + σ2I −

√
σ2T2 + σ2I

)
e
− (µ∗1−µ

∗
2)

2

2(σ2T1
+σ2

T2
+2σ2

I)

√
2
√
σ2T1 + σ2T2 + 2σ2I

. (S15)

We will explore when ITV promotes makes each positive or negative. To
do this, we will take the partial derivative of each of the above equations,
to see the impact of ITV in species 1. For notational simplicity, we define
σ2j = σ2Tj + σ2I .

The partial derivative of the stabilizing mechanism is

∂
(
∆ρ
)

∂σ21
=

e
− (µ∗1−µ

∗
2)

2

2(σ21+σ
2
2)

(
−(µ∗1 − µ∗2)2(σ21 +

√
σ21
√
σ22) + (

√
σ21 −

√
σ22)
√
σ22(σ21 + σ22)

)
2
√

2
√
σ21(σ21 + σ22)

5
2

.

(S16)

This will be positive, meaning that ITV will increase stability, if

(µ∗1 − µ∗2)2 <
(
√
σ21 −

√
σ22)
√
σ22(σ21 + σ22)

σ21 +
√
σ21
√
σ22

. (S17)
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There are a few results to note. First, the left hand side is always non-
negative, and the right hand side will only be positive if σ21 > σ22. Thus, it
is always destabilizing for the species with less ITV to increase their ITV.
Second, this inequality is more likely to be true when (µ∗1 − µ∗2)2 is small
(i.e. species have similar niches) and (

√
σ21 −

√
σ22) is large (i.e. species 1

has much more ITV than species 2). This describes the case of a generalist-
specialist trade-off: both species have similar niches, and one species has far
more ITV than the other. In this case, species are more differentiated when
species 1 has more ITV. When this is not the case, however, then increasing
species 1’s ITV will decrease stability.

Additionally, consider the case where species are constrained to have
equal ITV (i.e. σ21 = σ22 = σ2). In this case, the partial derivative is

∂
(
∆ρ
)

∂σ21
= −(µ∗1 − µ∗2)2e

−µ
∗
1−µ

∗
2)

2

2σ2

2 (σ2)2
. (S18)

This will always be negative. Thus, uniformly increasing both species’ ITV
will always undermine stability, at least under these assumptions.

Next, the partial derivative of species 1’s fitness advantage is

∂
(
∆ρ1 −∆ρ

)
∂σ21

=

e
− (µ∗1−µ

∗
2)

2

2(σ21+σ
2
2)

(
(µ∗1 − µ∗2)2(σ21 −

√
σ21
√
σ22) + (

√
σ21 +

√
σ22)
√
σ22(σ21 + σ22)

)
2
√

2
√
σ21(σ21 + σ22)

5
2

.

(S19)

This will be positive whenever√
σ21 −

√
σ22 > −

(
√
σ21 +

√
σ22)
√
σ22(σ21 + σ22)√

σ21(µ∗1 − µ∗2)2
. (S20)

The right side of this inequality will always be negative. Thus, this will
always be true – and thus ITV will be advantageous for species 1 – when
σ21 ≥ σ22. If σ21 << σ22, then the above inequality is approximately

(σ22)
3
2 >

√
σ21(µ∗1 − µ∗2)2. (S21)

Thus, there is an edge case where if (µ∗1 − µ∗2)
2 is very large (i.e. both

species have highly differentiated niches), that increasing ITV in species 1
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could weaken its fitness. However, it appears that this situation will only
happen when species 1 has a large fitness disadvantage, and it appears that
it will simply equalize fitness. Thus, in nearly every case, increasing species
1’s ITV increases its fitness.

Section S1.3 Alternative definitions of fitness and stability

The above results were defined in terms of the Chesson (2003) definition
of fitness and stability (specifically, mean fitness difference and community
average stabilizing mechanism). However, Lotka-Volterra models are often
analyzed in terms of the Chesson (1990) definition. This defines relative
competitive ability in terms of the fitness ratio,

κ1
κ2

=

√
α12α22

α21α11
(S22)

and stability in terms of the stabilizing niche difference,

(1− ρ) = 1−
√
α12α21

α11α22
(S23)

Under this definition, species coexist when

κ1
κ2

< ρ <
κ1
κ2
. (S24)

Plugging in our competition coefficients, equation S9, we see that the
fitness ratio is

κ1
κ2

=

√√√√√
√
σ2T2√
σ2T1

. (S25)

Thus, increasing a species’ ITV (and therefore increasing its σ2j ) will always
change the fitness ratio in a way that benefits it. This result is the same as
with the previous definition of fitness.

Similarly, we see that the stabilizing niche difference is

(1− ρ) = 1−

√√√√2
√
σ21
√
σ22

σ21 + σ22
e

{
−

(µ∗1−µ
∗
2)

2

σ21+σ
2
2

}
. (S26)
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To analyze what occurs when ITV increases for a single species, we take the
derivative of this in terms of σ2T1, and find that

∂(1− ρ)

∂σ21
=

2(µ∗1 − µ∗2)2 − σ21 + σ22

2
√

2

(√
σ2
1σ

2
2

σ2
1+σ

2
2

) 3
2

(σ21 + σ22)4

√
e

{
−

(µ∗1−µ
∗
2)

2

σ21+σ
2
2

}
. (S27)

In the case where σ21 ≈ σ22, this simplifies to

∂(1− ρ)

∂σ21
≈ 0. (S28)

Thus, when both species have similar levels of ITV, increasing ITV for either
species will weaken stability. If species 1 has much more ITV than species
2, then

∂(1− ρ)

∂σ21
≈ 2(µ∗1 − µ∗2)2 − σ21

2
√

2

(√
σ2
1σ

2
2

σ2
1

) 3
2

(σ21)4

√
e

{
−

(µ∗1−µ
∗
2)

2

σ21

}
. (S29)

This will be positive as long as σ21 < 2(µ∗1 − µ∗2)2, and negative otherwise.
Similarly, if species 2 has much more ITV, then

∂(1− ρ)

∂σ21
≈ 2(µ∗1 − µ∗2)2 + σ22

2
√

2

(√
σ2
1σ

2
2

σ2
2

) 3
2

(σ22)4

√
e

{
−

(µ∗1−µ
∗
2)

2

σ22

}
. (S30)

This will always be positive. Thus, increasing a species’ ITV will always
decrease the stabilizing niche difference, except when it contributes to a
generalist-specialist trade-off (i.e. when it has the higher ITV, and mean
trait differences are small compared to dietary overlap). This result is the
same as the case of the previous definition of stability.

αjk =
1√

2π(σ21 + σ22)
e
− 1

2

(µ∗1−µ
∗
2)

2

2σ21+2σ22 . (S31)

Section S1.4 Other forms of aj(T, h) and pj(T )

Above we investigated the MacArthur model when aj(T, h) and pj(T ) were
Gaussian functions. However, to test the generality of this situation, we
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Figure S1: Variation independent mechanism with a uniform distribution.
(a) We assumed that a species’ uptake, aj(T, h), and their trait distribu-
tion, pj(T ), were both normally distributed functions. Thus, ITV allowed
a species to consume a wider variety of resources, but lowered the average
attack rate on each. (b) Like with the Gaussian model, increasing the ITV
of one species could increase the stabilizing mechanism my generating a
generalist-specialist trade-off, but increasing ITV of both species weakened
the mechanism. (c) Species with higher ITV had a fitness advantage, as
they consumed more resources and therefore experience lowered intraspe-
cific competition. Parameters: σ2I = 0.7, a∗1 = −0.5, a∗2 = 0.5, .

explored other forms of aj(T, h) and pj(T ) numerically. In each case, we
first created a vector of the pdf of the trait distribution, p(T ) (a 1 × n
vector), and an n× n matrix aj(T, h) (where entry (T, h) is the attack rate
that an individual with trait T has on resource h). Here, n was chosen to be
large enough to encompass all possible resources that would be consumed. In
cases where aj(h) or p(T ) were normal, we set all values above 3 standard
deviations to 0. The vector of attack rates was then just the sum of the
product aj(h) = p(T )aj(T, h), and the competition coefficient was αjk =
aja

T
k /n (where aTk is the transpose of the vector). These two steps are thus

the numerical version of equations S8 and S9. We could then calculate the
stabilizing mechanisms and fitness differences using equations S12 and S13.

First, in Fig. 3 of the main text, we show aj(T, h) and pj(T ) as both
having Gaussian distributions, where species had different average uptakes.
In that case, it was very hard for ITV to be stabilizing. However, if both
species have very similar mean traits, then it is much easier for ITV in one
species to create a stabilizing mechanism, fig. S2.

We also investigated the case where aj(T, h) and p(T ) were uniformly
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Figure S2: Variation independent mechanism when species have similar
mean uptake. (a) We assumed that both species had very similar mean
uptake (µ∗1 ≈ µ∗2). (b) In this case, there was a broad range in which ITV in
one species could generate a generalist-specialist trade-off, promoting coexis-
tence. (c) Species with higher ITV still had a fitness advantage. Parameters:
σ2I = 0.7, µ∗1 = −0.5, a∗2 = 0.5.

distributed. We defined an individual’s uptake as

aj(T, h) =

{
1

2σ2
I

for |a∗j + T − h| ≤ σ2I
0 for |a∗j + T − h| > σ2I

. (S32)

An example is shown in fig. S1. We found that the results were qualitatively
similar to the case where they are normally distributed. We found that
increasing both species ITV weakens the stabilizing mechanism. ITV in just
one species will weaken the stabilizing mechanism when trait means differ
substantially, and it strengthen the stabilizing mechanism when trait means
are sufficiently similar. ITV in both species always weakens the stabilizing
mechanism. Finally, ITV will always give a species a fitness advantage.

Section S2 Model 2: The storage effect

Section S2.1 Putting ITV into the lottery model

We first derive λj(T, t), the amount that an individual with trait T is ex-
pected to contribute to the population at time t+ 1 via survival and repro-
duction. Every individual survives with probability 1−δ. Let K be the total
number of territories. An individual will produce Yj(T, t) offspring in year
t, and therefore send Yj(T, t)/K offspring to each territory. That territory
will be vacated with probability δ, otherwise, the offspring will not capture
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the site. If the site is vacant, then the offspring must compete with all other
offspring for that site. To calculate the number of individuals competing
for a site, let us define Ij(T, k, t) as 1 if a given site k has an individual
of species j with trait T at time t, and 0 otherwise. Then, the number of
offspring competing for a site will be∑

j

∑
T

∑
k

Yj(T, t)Ij(T, k, t), (S33)

where the leftmost summation is over both species, the middle summation is
over all possible traits, and the rightmost summation is over all sites. Let’s
defined Nj(T, t) as the fraction of sites occupied by an individual of species
j. Thus,∑

j

∑
T

∑
k

Yj(T, t)Ij(T, k, t) =
∑
j

∑
T

Yj(T, t)]Nj(T, t). (S34)

The pdf of the trait is p(T ) = Nj(T, t)/Nj(t), therefore∑
j

∑
T

∑
k

Yj(T, t)Ij(T, k, t) =
∑
j

∑
T

Yj(T, t)p(T )Nj(t). (S35)

If we define Yj(t) =
∫
Yj(T, t)p(T )dT as the mean value of Yj(T, t), then this

is simply ∑
j

∑
T

∑
k

Yj(T, t)Ij(T, k, t) =
∑
j

Yj(t)Nj(t)

= C(t)

(S36)

(where C(t) =
∑

j Yj(t)Nj(t) now uses average fecundity). Thus, the chance

that a seed captures of an individual captures a given site is
Yj(T,t)
KC(t) (and this

is summed across all K sites). Therefore,

λj(T, t) = 1− δ +
δYj(T, t)

C(t)
. (S37)

Once we have our equation for λj(T, t), it is fairly easy to calculate the
species-average growth rate:

λj(t) =

∫
λj(T, t)p(T )dT

=

∫ (
1− δ +

δYj(T, t)

C(t)

)
p(T )dT

=1− δ +
δYj(t)

C(t)

(S38)
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Thus, we see that the impact of ITV is purely caused by how it changes
Yj(t) (and with it C(t)) on any given time step.

Section S2.2 Invasion analysis

For our invasion analysis, we will use the variable transformation

Yj(t) = ln {Yj(t)}
C(t) = ln {C(t)} .

(S39)

Our equation then becomes

λj(t) = 1− δ + δeYj(t)−C(t). (S40)

We make this change of variables as it substantially simplifies our calcula-
tions below (if we did not, then most terms would need to be scaled by a
power of E [Yj(t)]).

We want to figure out the long term rate of increase of each species,
E [rj(t)] = E [ln{λj(t)}]. Because E [ln{λj(t)}] is nonlinear, there is not a
good way to do this exactly. Instead, we determine what ln{λj(t)} would
be at values near Yj(t) = E [Yj(t)] and C(t) = E [Yj(t)] (that is not a typo,
C(t) should be near the mean of Yj(t), as doing this makes ln{λj(t)} = 0).
We first do a second-order Taylor series approximation, i.e.

rj(t) ≈rj(t)|Y=C=E[Y] + (Yj(t)−E [Yj(t)])
∂rj(t)

∂Yj(t)
+ (Yj(t)−E [Yj(t)])

∂rj(t)

∂C(t)

+
1

2
(Yj(t)−E [Yj(t)])2

∂2rj(t)

∂Yj(t)2
+

1

2
(C(t)−E [Yj(t)])2

∂2rj(t)

∂C(t)2

+ (Yj(t)−E [Yj(t)]) (Cj(t)−E [Yj(t)])
∂2rj(t)

∂Yj(t)∂C(t)
.

(S41)

This simplifies to

rj(t) ≈0 + (Yj(t)−E [Yj(t)]) δ − (C(t)−E [Yj(t)]) δ

+
1

2
(Yj(t)−E [Yj(t)])2 δ(1− δ) +

1

2
(C(t)−E [Yj(t)])2 δ(1− δ)

− (Yj(t)−E [Yj(t)]) (Cj(t)−E [Yj(t)]) δ(1− δ).
(S42)

For this to be an accurate representation, we must assume that var (Y1(t)),
var (Y2(t)), and E [Y1(t)]−E [Y2(t)] are all O(ε), where ε is a small number
(see Chesson, 1994, for details).
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Next, we calculate the average of equation S42. By definition, the
long term average of Yj(t) − E [Yj(t)] is 0, and the long term average
of (Yj(t)−E [Yj(t)])2 is the variance of Yj(t), var (Yj(t)). The mean of
(C(t)−E [Yj(t)])2 is var (Yj(t)) + (E [C(t)]−E [Yj(t)])2; and, under our as-
sumptions size assumptions, ((E [C(t)]−E [Yj(t)])2 will be O(σ4), and can
thus be ignored. Thus,

E [rj(t)] ≈0 + 0−
(
C(t)−E [Yj(t)]

)
δ

+
1

2
var (Yj(t)) δ(1− δ) +

1

2
var (C(t)) δ(1− δ)

− cov (Ej(t), C(t)) δ(1− δ).

(S43)

If we define βj = δ, then this simplifies to

E [rj(t)]

βj
≈0 + 0−

(
C(t)−E [Yj(t)]

)
+

1

2
var (Yj(t)) (1− β) +

1

2
var (C(t)) (1− δ)

− cov (Ej(t), C(t)) (1− δ).

(S44)

To calculate the invader growth rate of invader species i (when species
r is the resident), we will calculate

E [ri(t)] = E [ri(t)]−
βi
βr

E [rr(t)] . (S45)

Then, by equation S44, this is

E [ri(t)]

βi
≈E [Yi(t)]−E [Yr(t)]

+
1− δ

2
(var (Yi(t))− var (Yr(t)))

+ 0

− (1− δ) (cov (Yi(t), C(t))− cov (Yr(t), C(t)))

(S46)

(note the third term is 0 because C(t) will be the same for both species).
The first term is often the most important part of the fitness effect.

Its average across species will be 0, as E [Yj(t)] only depends on a species’
trait distribution (and thus will not change with its abundance). Therefore,
species 1’s fitness advantage is simply E [Y1(t)]−E [Y2(t)]. Thus, species 1
will have an advantage if it produces more seeds on average than its com-
petitor. ITV can affect this by changing fecundity in any given year, and
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either increasing or decreasing it on average overall. For similar reasons, the
second term will also have a small impact on the fitness effect and no sta-
bilizing effect. It gives an advantage to the species with the higher variance
in yield.

The last term is the storage effect, and will generally be the only mech-
anism that can be stabilizing. By our definition of C(t), C(t) = Yr(t). Thus,
we find cov (Yr(t), C(t)) = var (Yr(t)), and cov (Yr(t), C(t)) = ρir(var (Yr(t))var (Yi(t)))1/2
(where ρir is the correlation between the Yj(t)’s). Thus, this term will be
positive for both species (unless ρir = 1), and therefore contribute to the
stabilizing mechanism. The important intuitive thing is this: the stabiliz-
ing effect will be stronger when var (Yj(t)) is large, and when ρir is small
or negative. Thus, ITV in both species will decrease both of these factors,
as they reduce variation in Yj(t) and cause species to have a more similar
response.

Section S2.3 Further analysis

In the text, we considered a trait T that affects fecundity, such that

Yj(T, t) = (1 + f(T ))

(
Ygain−je

−
(E(t)−µj)

2

w + Ymin−j

)
=(1 + f(T ))Y (0, t).

(S47)

In equation === of the main text, we gave an approximation for how ITV
would change E [Yj(t)] when fecundity is adjusted according to a nonlinear
function f(T ). When |T | is not too large, f(T ) can be approximated using
a Taylor series

f(T ) ≈ f(0) + T
df(0)

dT
+ T 2d

2f(0)

dT 2
. (S48)

The mean of T is 0, and the variance is σ2Tj . Thus,

f(T ) ≈f(0) + T
df(0)

dT
+ T 2

d2f(0)

dT 2

=f(0) + σ2Tj
d2f(0)

dT 2

(S49)

and

Yj(t) ≈
(

1 + σ2Tj
d2f(0)

dT 2

)
Yj(0, t). (S50)

For our analysis with Yj(t), we can use similar methods. Yj(t) is simply

Yj(T, t) = ln {Yj(T, t)} = ln {1 + f(T )}+ ln {Yj(0, t)} . (S51)
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Thus, using the above methods, we find that

Yj(t) ≈ σ2Tj

((
df(0)

dT

)2

− d2f(0)

dT 2

)
+ Yj(0, t). (S52)

Based on our analytical work in equation S46, this has a couple obvious
implications. First, the fitness-difference that results from differences in
mean fecundity becomes

∆ρi =E [Yi(t)]−E [Yr(t)]

≈Yi(0, t)− Yr(0, t) +
(
σ2T i − σ2Tr

)((df(0)

dT

)2

− d2f(0)

dT 2

)
(S53)

Thus, if (
(
df(0)
dT

)2
− d2f(0)

dT 2 ) is positive (i.e. f(T ) is convex up or only slightly

concave down), then ITV gives species a fitness advantage, and if it is neg-
ative, then ITV gives species a fitness disadvantage.

Second, this will have no impact on the stabilizing mechanism. The

fecundity in any given year will be boosted by σ2Tj

((
df(0)
dT

)2
− d2f(0)

dT 2

)
. This

is constant relative to t, therefore

cov
(
Yj(t),Yk(t)

)
= cov (Yj(0, t),Yk(0, t)) (S54)

As such, ITV should have no impact on ∆I.
We tested our results with simulations. We modeled f(T ) = exp−T 2/2−

1, fig. S3. We modeled populations by generating 1000 individuals, each with
different traits. Trait were determined using the Box-Muller method (Box
and Muller, 1958): we generated two uniform distributions, U1 and U2; then,
species traits were T =

√
−2 ln {U1} cos(2πU2). Environmental conditions,

E(t), were also generated using these methods (doing this allowed us to re-
move stochasticity produced by randomly choosing conditions). Then, each
time step, we calculated the fecundity for each individual in the population,
and averaged this over the population to determine Yj(t). In an invasion

analysis, C(t) = Yr(t). Thus, we calculated the invader’s growth rate as

E [ri] = ln

{
1− δ + δ

Yi(t)

Yr(t)

}
. (S55)

Similar methods were used for both types of traits, the only difference was
how the trait affected fecundity.
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Figure S3: Storage effect when the trait affects fecundity. (a) We assumed
that a species with trait T had fecundity Yj(0, T ) exp{−T 2/2}. Thus, ITV
reduced a species’ average yield. (b) ITV had a slightly negative impact
on the stabilizing mechanism, as it seemed to slightly weaken variation in
fecundity. (c) ITV had a large negative impact on a species’ fitness. Pa-
rameters: δ = 0.4, µ1 = 0.15, µ2 = −0.15, w = 1/

√
2, Ymin = 0.3, Y ∗gain = 1.

E(t) was a normal distribution with mean 0 and variance 0.4.

We found that ITV had a small impact on the stabilizing mechanism.
This appeared to happen because ITV lowered f(T ), which reduced the
variance of Yj(t), which must have slightly weakened temporal partitioning.
However, the main impact was on the fitness difference, where increasing
ITV reduced a species’ fitness. Thus, we are confident in claiming that at
least the main impact is to change relative fitness, rather than reduce the
stabilizing mechanism.

In the main text that when the trait affect a species’ optimal conditions
for reproduction, ITV would reduce a species’ fitness if they were mostly
adapted to the environment, but it could increase a species’ fitness if they
were mostly maladapted. We show an example of the later in fig. S4. This
appears most likely to occur when a species’ average resource uptake is
very different from the environmental average. Interestingly, in the case in
fig. S4, too much ITV will reduce a species’ fitness, as they start generating
individuals on the other extreme end of maladaptation.
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Figure S4: Storage effect when the trait affects optimal conditions for re-
production. (a) We assumed that an individual’s trait determined what
environmental conditions were optimal for it to reproduce. However, we
also assumed that the average optimal condition for each species was more
than a standard deviation away from the average environmental conditions
(b) ITV had a negative impact on the stabilizing mechanism, as it is a
trade-off trait. (c) However, here ITV boosted a species’ relative fitness.
Parameters: δ = 0.4, µ∗1 = 0.4, µ∗2 = −0.4, w = 1/

√
2, Ymin = 0.3, Y ∗j = 1.

E(t) was a normal distribution with mean 0 and variance 1/
√

2.

Section S3 Model 3: The fitness-density covari-
ance

Section S3.1 Invasion analysis

As with the lottery model, we will work with the transformed variables

Yj(x) = ln {Yj(x)}
Cj(x) = ln {C(x)j} .

(S56)

Note that this time we write the transformed variable as Cj(x), rather than
just C(x), as it may differ between species (because of differences in αj).
Our equation then becomes

λj(x) =

2∑
x=1

νj(x, t)e
Yj(x)−Cj(x). (S57)

First, we calculate λj(x) as the growth rate at each site, weighted by the
number of individuals at each site

λj(x) = E [νj(x, t)]E
[
eYj(x)−Cj(x)

]
+ cov

(
νj(x, t), e

Yj(x)−Cj(x)
)

(S58)
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(where E [ ] is now a spatial mean). By our definition of νj(x, t), its average
is 1. Thus,

λj(x) = E
[
eYj(x)−Cj(x)

]
+ cov

(
νj(x, t), e

Yj(x)−Cj(x)
)
. (S59)

For this analysis, we will approximate eYj(x)−Cj(x) using a first-order Taylor
series around the point Yj(x) = Cj(x) = E [Yj(x)],

eYj(x)−Cj(x) ≈ 1 + (Yj(x)−E [Yj(x)])− (Cj(x)−E [Yj(x)]) . (S60)

Note, we could use a second-order Taylor series, which would reveal a spa-
tial relative nonlinearity and a spatial storage effect (Chesson, 2000). We
stopped with the first-order model, as previous work has suggested that a
fitness-density covariance is the main mechanism (Uriarte and Menge, 2018).
Substituting equation S60 into S59, we find that

λj(x) ≈1 + E [(Yj(x)]−E [Yj(x)])− (E [Cj(x)]−E [Yj(x)])

+ cov (νj(x, t), 1 + (Yj(x)−E [Yj(x)])− (Yj(x)−E [Cj(x)]))

=1−E [Cj(x)] + E [Yj(x)]

+ cov (νj(x, t),Yj(x))− cov (νj(x, t), C(x)) .

(S61)

For our invasion analysis, we will define βj = 1. We focus on λj − 1,
rather than just λj , because it centers it around 0 (i.e. so that < 0 mean
declining and > 0 means increasing). When we do this, we can write the
invader growth rate as

λi(x)− 1 = (λi(x)− 1)− (λr(x)− 1)

≈E [Yi(x)]−E [Yr(x)]

− (E [Ci(x)]−E [Cr(x)])

+ cov (νi(x, t),Yi(x))− cov (νr(x, t),Yr(x))

− (cov (νi(x, t), C(x))− cov (νi(x, t), C(x))) .

(S62)

The first term is similar to the storage effect model: it is a comparison
of the average fecundity over sites. Its average across species will be 0, thus
it has no stabilizing effect. Instead, species 1 will have a fitness advantage
of E [Y1(x)] − E [Y2(x)] (which will be negative if it is less fecund than its
average competitor). The second term is new. It represents differences in
species’ sensitivity to competition. If both species have the same αj , then
this term will be 0. Otherwise, it will be positive for the species who is
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less susceptible to competition, and negative for the species who is more
susceptible.

The third and fourth terms of equation S70 are fitness-density covari-
ances. The third term determines how much of the population is in its
optimal site (based on fecundity). It will be stabilizing if the invader can
concentrate itself in optimal sites more than the resident. The last term
determines how much a population is in the sites with high competition.
This will be stabilizing whenever the invader and resident become separated
– the invader can be at high relative density (high ν) without being at high
absolute density (leading to high C), whereas the resident cannot; therefore,
the covariance will be more positive for the resident.

Section S3.2 Analysis of this model with ITV

We first consider the case where ITV affects sensitivity to competition, such
that αj(T ) = (1 + T )α∗j . This will affect how susceptible a population is to
competition, on average. We can write the impact of Cj(x, t) using Taylor
approximations, (we will use N(x) = N1(x, t) +N2(x, t) for short)

Cj(x) = ln
{

1 + α∗j (1 + T )N(x)
}

≈ Cj(0, x)−

(
α∗jN(x))

)2
1 + α∗jN(x)

σ2Tj .

(S63)

This is complicated, but has an important implication: ITV decreases the
negative impact a species has to competition.

Plugging our approximation for Cj(x) into equation S70, we find that it
is now

λi(x)− 1 ≈E [Yi(x)]−E [Yr(x)]

− (E [Ci(0, x)]−E [Cr(0, x)])

+ E

[
(α∗iN(x)))2

1 + α∗iN(x)
σ2T i

]
−E

[
(α∗rN(x)))2

1 + α∗rN(x)
σ2Tr

]
+ cov (νi(x, t),Yi(x))− cov (νr(x, t),Yr(x))

− (cov (νi(x, t), C(0, x))− cov (νi(x, t), C(0, x)))

+ cov

(
νi(x, t),

(α∗iN(x)))2

1 + α∗iN(x)
σ2T i

)
− cov

(
νr(x, t),

(α∗rN(x)))2

1 + α∗rN(x)
σ2Tr

)
(S64)

19



This equation has two novel terms. The third term shows how ITV affects
a species’ average susceptibility to competition. The species with more ITV
will have a fitness advantage, as it can produce more offspring on every site.

The last term is now the covariance between density and
(α∗
iN(x))

2

1+α∗
iN(x) σ

2
T i; this

term will tend to be very small, and simply state that a species will have
an advantage if there are more individuals where it is least susceptible to
competition.

The biggest impact of ITV on stability will likely be on changing the
distribution of species νj(x, t). If ITV causes species to become more segre-
gated, it could in theory raise the stabilizing mechanism. However, simula-
tions suggest that the opposite is true: it weakens stability (likely by making
species less segregated), Fig. X of the main text.

We tested multiple ways that ITV could affect coexistence. We first
considered the possibility that the trait affected the optimal conditions for
reproduction, µj , fig. S5. We assumed that there was an environmental
condition at each patch, E(1) and E(2). We then modeled an individual’s
fecundity in habitat x as

Yj(x) = Ymax exp

{
−(E(x)− µj)2

w

}
+ Ymin. (S65)

This is an identical model to the optimal conditions for reproduction in the
storage effect model. We assumed that the trait T affected an individual’s
optimal condition, such that

µj(T ) = µ∗j (1 + T ) (S66)

(where T > −1). Therefore, an individual’s growth rate at site E(x) would
be

Yj(x, T ) = Ymax exp

{
−

(E(x)− µ∗j − T )2

w

}
+ Ymin−j . (S67)

This a niche trait: a high-T individual is better at competing in high-
E(x) patch, but worse at competing in low-E(x) patches. ITV in this
trait will reduce a species? average reproductive output in patches where
E(x)??j*, but increase a species? average reproductive output in patches
where E(x) is close to µ∗j . Thus, ITV makes a species more of a generalist
in its habitat niche (Fig.S5a).

Our results were very similar to those of the storage effect model, and
here we provide intuition as to why. The trait’s impact on Yj is a Gaussian
distribution, thus we know that second derivative of Yj(T, x) will be negative
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when (E(x)−µ∗j −T )2 < w, and positive elsewhere, and it will generally be
at its most negative when E(x) − µ∗j − T = 0. This will not quite be true
for Yj(T, x), as it is the natural log of Yj(T, x), though this gives us a start
for building intuition. First, ITV is likely to counteract the fitness-density
covariance in the fourth and fifth terms. Species are more likely to become
segregated, and will benefit more from segregation, if they partition habitat.
ITV weakens this partitioning, by making a species’ growth rate more even
across both patches. Thus, as with the storage effect model, ITV will reduce
the stabilizing mechanism. The one exception is when there was a generalist-
specialist trade-offfig. S5b. It appeared that the conditions for a generalist-
specialist trade-off to occur were somewhat limited, as there were only two
environmental conditions; therefore, it seemed to only occur if both species
were best adapted to the same patch. Second, we found that ITV could
promote or weaken a species’ fitness. ITV will reduce a species’ fecundity
in locations where it is a strong competitor, and increase its fecundity in
locations where it is a weak competitor. The net impact of this across both

patches will determine whether E
[
∂2Yr(0,x)
∂T 2

]
is positive or negative (and

therefore whether ITV improves or weaken’s a species relative fitness). Fig.
S5 is an example of the later: ITV makes the species marginally better in
its worst habitat and much worse in its best habitat (fig. S5c), therefore,
ITV tends to reduce a species’ fitness.

Second, we examined how the stabilizing mechanisms and fitness differ-
ences would change if fecundity dependent on some environmental condition

Yj(x, T ) = Y ∗j exp

{
−

(E(x)− µ∗j − T )2

w

}
+ Ymin−j . (S68)

The average yield of a population at T will be

Yj(T, x) ≈ Yj(0, x) + σ2Tj
∂2Yj(0, x)

∂T 2
. (S69)

(the second derivative of Yj(T, x) is too complicated to be worth writing,
but we discuss its important properties below). Putting this into our invader
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Figure S5: Fitnessd-density covarinace when the trait affects optimal con-
ditions for reproduction. (a) We assumed that a species with trait T its
optimal conditions for reproduction. Because there were only two patches
(the black lines), only two of those possible conditions were experienced. (b)
Here we show the growth rate of individuals of species 1 in each patch. The
red line is its growth rate at different competitor densities in its best habi-
tat, while the blue line is its growth rate at different densities in its worse
habitat. ITV tends to increase its total reproduction in the worse habitat,
but reduce it in the best habitat. (c) We find that ITV had a strongly neg-
ative impact on the stabilizing mechanism. (d) Additionally, ITV reduces
a species’ relative fitness. Parameters: d = 2, α1 = α2 = 0.5, µ1 = 0.15,
µ2 = −0.15, w = 1/

√
2, Ymin = 10, Ygain = 20, E(1) = −0.2, E(2) = 0.2.
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growth rate approximation, equation S70, we find that

λi(x)− 1 ≈E [Yi(0, x)]−E [Yr(0, x)]

+ σ2T iE

[
∂2Yr(0, x)

∂T 2

]
− σ2TrE

[
∂2Yr(0, x)

∂T 2

]
− (E [Ci(x)]−E [Cr(x)])

+ cov

(
νi(x, t),Yi(0, x) + σ2T i

∂2Yi(0, x)

∂T 2

)
− cov

(
νr(x, t),Yr(0, x) + σ2Tr

∂2Yr(0, x)

∂T 2

)
− (cov (νi(x, t), C(x))− cov (νi(x, t), C(x))) .

(S70)

The main impact of ITV would be on on the mean effect; this will not vary
with resident and invader states, and will therefore mainly produce fitness
differences. Depending on the curvature, it could have a slight effect on the

first fitness-density covariance term, cov
(
νi(x, t),Yj(0, x) + σ2Tj

∂2Yj(0,x)
∂T 2

)
.

However, we expect that this impact would be small. Simply, the impact

would be related to σ2Tjcov
(
νj(x, t),

∂2Yj(0,x)
∂T 2

)
. For this to make a dif-

ference,
∂2Yj(0,x)
∂T 2 would need to differ significantly between patches (which

seems like it will be much smaller than between-patch differences in Yj(0, x)),
and also it would need to differ between species. It is also possible that ITV
could impact the stabilizing mechanism indirectly by altering νj(x, t), how-
ever, again, because it is boosting a species’ ability to compete in both
patches, this impact is likely to be small. This is indeed what we found
using simulations, fig. S6.

We tested the above claims using simulations. We initialized the resi-
dent’s population to Yr(x, 0)/αr in each population. We then simulated the
population for 2000 generations. Each population was represented by 1000
individuals with uniformly distributed traits. Each time step, we calculated
the average fecundity of an individual with each trait at each site, and used
the mean across individuals as the fecundity for that site. We then dispersed
the population. The invader’s density was set to 0, however, its relative den-
sity (νi(x)) still changed over time: the per-capita growth rate at site x and
time t was

∆νi(x, t) =
Yi(x, t)

Yr(x, t)
+

1

νi(x, t)
d (νi(y, t)− νi(x, t)) , (S71)
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Figure S6: Fitness-density covariance model with trait that affects sensi-
tivity to competition. (a) Here we show an individual’s reproduction in
patch 1 and 2, at different levels of competitor density. This trait is a non-
compensatory trait, as individuals with a lower αj produce more offspring in
both patches. ITV increases a species’ average reproduction, as individuals
low αj have a disproportionately high reproduction. (b) ITV had minimal
impact on the stabilizing mechanism. Species with more variation benefitted
everywhere, and thus it had little impact on how habitat was partitioned. If
one species had much higher ITV than the other, this was slightly destabi-
lizing, as it likely gave invaders an advantage in their non-optimal habitat,
reducing the benefit of habitat partitioning. (c) However, ITV increased a
species’ relative fitness, as a species with high trait variation was less sus-
ceptible to competition on average. Parameters: d = 2, α∗1 = α∗2 = 0.5,
Y1(1) = 27.6, Y1(2) = 17.6, Y2(1) = 17.6, Y2(1) = 27.6.

and so the actual relative density at time t+ 1 was then

νi(x, t+ 1) =
∆νi(x, t)

∆νi(x, t) + ∆νi(y, t)
. (S72)

We allowed the populations to equilibrate for 1000 generations, and then
recorded the invader’s average growth rate over the next 1000 generations.

Section S4 Model 4: Relative nonlinearities

Finally, we examine the Monod model. A species’ growth rate is

rj(t) =fj(R(t))− δ

=
ajR(t)

1 + ajR(t)hj
− δ

(S73)
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where aj is the species’ attack rate, hj is its handling time, δ is its death
rate, and R(t) is the density of resources. We will treat the dynamics of the
resource implicitly.

Section S4.1 Invasion analysis

We will first solve this model without ITV, and then show how our results
will be essentially the same with ITV. We first write this as a Taylor series
expansion around the resource level (R(t)) that will allow the species to be
at equilibrium,

R∗j =
δ

aj (1− hjδ)
. (S74)

The Taylor approximation is

rj(t) ≈rj(t)|R(t)=R∗
j

+
(
R(t)−R∗j

) drj(t)
dR(t)

+
1

2

(
R(t)−R∗j

)2 d2rj(t)
dR(t)2

=0 +
(
R(t)−R∗j

) aj
(1 + ajR∗jhj)

2
−
(
R(t)−R∗j

)2 a2jhj

(1 + ajR∗jhj)
3
.

(S75)

Defining E [R(t)] and σ2R as the temporal mean and variance of R(t), the
temporal mean growth rate is

E [rj(t)] ≈rj(t)|R(t)=R∗
j

+
(
E [R(t)]−R∗j

) drj(t)
dR(t)

+
1

2
σ2R

d2rj(t)

dR(t)2

=0 +
(
E [R(t)]−R∗j

) aj
(1 + ajR∗jhj)

2
− σ2R

a2jhj

(1 + ajR∗jhj)
3
.

(S76)

Note that E [R(t)] likely differs slightly from R∗j . If we define the sensitivity
to competition as the derivative of the functional response,

βj =
dfj(R

∗
j )

dR(t)

=
aj

(1 + ajR∗jhj)
2
,

(S77)

then,

E [rj(t)]

βj
≈E [R(t)]−R∗j −

σ2R
βj

d2rj(t)

dR(t)2

≈E [R(t)]−R∗j − σ2R
ajhj

1 + ajR∗jhj
.

(S78)
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Writing this as an invader-resident comparison, it is

E [ri(t)]

βi
=
E [ri(t)]

βi
− E [rr(t)]

βr

≈− (R∗i −R∗r)− σ2R
(

1

βi

d2ri(t)

dR(t)2
− 1

βr

d2rr(t)

dR(t)2

)
=− (R∗i −R∗r)− σ2R

(
aihi

1 + aiR∗i hi
− arhr

1 + arR∗rhr

)
.

(S79)

There are two terms in the above equation. The first term is an R∗

comparison: in a stable environment, the species that can persist at the
lowest resource level will win competition (Hsu et al., 1977). The value of
each species’ R∗j does not depend on its density, therefore this term will
only produce fitness differences. The second term gives the amount that a
species’ growth rate is reduced by resource fluctuations. The species with
the larger handling time will often be penalized more, and this penalty will
be stronger the higher variation is. This term could be stabilizing if the
amount of resource variation R∗j changes, depending on which species in
the resident. As previous work has shown (Armstrong and McGehee, 1980;
Chesson, 1994), this can promote coexistence if the species who is least
harmed by variation also tends to increase resource variation when they are
abundant.

Section S4.2 Inserting ITV into the Monod model

Our model considered three forms of ITV: variation in attack rate aj , vari-
ation in handling time hj , and variation in both. For simplicity, we will
work out the later case (as variation in aj alone can be calculated by setting
variation in hj to 0). An individual with a particular attack time α and
handling time η will have a growth rate of

rj(α, η, t) =fj(α, η,R(t))− δ

=
αjR(t)

1 + αR(t)η
− δ.

(S80)

Thus, the growth rate of the population is

rj(t) =

∫ ∫
(fj(α, η,R(t))− δpj(α, η)) dαdη

=

(∫ ∫
αR(t)

1 + αR(t)η
pj(α, η)dαdη

)
− δ.

(S81)
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Thus, if we define aj and hj as the mean of α and η across individuals
in species j, σ2αj and σ2ηj as the variance of α and η, and σ2αηj as their
covariance, then we can approximate the growth rate of species j as

rj(t) ≈ fj(aj , hj , R(t))+
1

2
σ2αj

∂2rj(t)

∂α2
+

1

2
σ2ηj

∂2rj(t)

∂η2
+σ2αηj

∂2rj(t)

∂α∂η
−δ. (S82)

Thus, if we define the population-level approximate growth rate as

f̃j(R(t)) = fj(aj , hj , R(t)) +
1

2
σ2αj

∂2rj(t)

∂α2
+

1

2
σ2ηj

∂2rj(t)

∂η2
+ σ2αηj

∂2rj(t)

∂α∂η
,

(S83)
then we can write the population-level growth rate as

rj(t) ≈ f̃j(R(t))− δ. (S84)

Note that under the trade-off scenario, ITV could likely altered the mean
values of aj and hj . This occurred because there was a nonlinear relationship
between the location on the trade-off axis. However, the above results could
still be defined in terms of the variance of the trait T , and could be used to
calculate a similar f̃j(R(t)).

We can use this in our previous analysis. We will define R̃∗j as the value

for which f̃j(R(t)) = δ. Then, substituting f̃j(R(t)) for fj(R(t)) into our
approximation for E [rj(t)] (equation S76), we find that

E
[
rj(t)

]
≈
(
E [R(t)]− R̃∗j

) df̃j(R̃∗j )
dR(t)

+
1

2
σ2R

d2f̃j(R̃
∗
j )

dR(t)2
. (S85)

By defining β̃j as the derivative of the functional response (akin to equation
S86),

β̃j =
df̃j(R̃

∗
j )

dR(t)
, (S86)

we can calculate the growth rate of an invader (akin to equation S79) as
approximately

E
[
ri(t)

]
β̃i

≈ −
(
R̃∗i − R̃∗r

)
− σ2R

(
1

β̃i

df̃i(R̃
∗
i )

dR(t)2
− 1

β̃r

df̃r(R̃
∗
r)

dR(t)2

)
. (S87)

Thus, we see that our result is qualitatively the same as before.
The above result shows that ITV can affect coexistence in three ways.

First, it could alter a species’ minimum resource requirement at equilibrium,
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affecting its relative fitness. Second, it could alter the impact of variation,
altering both the fitness-difference and the stabilizing mechanism. However,
we are slightly skeptical as to how important this is, as it will be proportional
to σ2Rσ

2
αj or σ2Rσ

2
ηj , and thus are likely only important when there is an

extreme amount of both resource variation and ITV. Third, it could alter
the amount that resources fluctuate, potentially altering both the fitness-
difference and the stabilizing mechanism.

Section S4.3 Simulating the Monod model

We simulated the Monod model using a fourth-order Runge-Kutta method.
Each resource was initiated at a density of Rin/δ. The resident’s population
was set to Nr(0) = 1, and the invader’s population was set to Ni(0) = 0.
We modeled each population as containing a large number of individuals
with different traits. To model variation in attack rate or handling time, we
assumed that individual’s trait T was uniformly distributed over many indi-
viduals. To model variation in the trade-off function, we assumed each pop-
ulation contained 1000 individuals whose trait T was normally distributed
(generated using the Box-Muller method, Box and Muller, 1958). In either
case, each time step we calculated the resource uptake of every individual in
the population, and used this average as the species’ mean resource uptake
at that time period. We calculated the growth rate of the invader at each
time step in order to calculate the mean growth rate of the invader (though
its population stayed at 0). We simulated the community for 500 units of
time, and calculated the invader’s average growth rate as its mean growth
rate over the last oscillation (i.e. the last τ units of time, where τ was the
period of Rin).

At the end of each simulation, we calculated the equilibrium resource
density, R∗i , for the invader. We did this using a bisection method: we chose
a minimum and maximum possible value of R, Rmin and Rmax respectively,
such that fi(Rmin) < δ and fi(Rmax) > δ (i.e. resource uptake was above
and below replacement). We then calculated the growth rate at Rtest =
(Rman + Rmin)/2. If fi(Rtest < δ, then we set a new Rmin to Rmin = Rtest;
otherwise we set Rmin to Rmax = Rtest. We repeated this 15 times.

First we examine the case where the trait T affects an individual?s han-
dling time,

hj(T ) = h∗j (1 + T ) (S88)

(where T > 1). As with attack rate, handling time is a hierarchical trait:
low-T individuals will be able to consume food faster. hj has a concave up
effect on resource uptake (Fig. S7a). As such, ITV raises average resource
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Figure S7: Relative nonlinearity with the trait affecting an individual’s han-
dling time. (a) Here we show as individual’s resource uptake a different
levels of resource density. This trait is a non-compensatory trait, as an in-
dividual with a low handling time will allow it to take up resources faster at
any resource level. ITV increased a species’ average resource uptake rate,
as individuals with a low handling time take up disproportionately more
resources. (b) ITV in species 1 (the opportunist) increases the stabilizing
mechanism, though ITV in species 2 (the gleaner) reduces it. These species
coexist when there was low resource variation when species 1 was the res-
ident, but high variation when species 2 was the resident. In either case,
ITV allows a species to reduce resource variation. Thus, ITV in species 1 in-
creases the difference in the variation niche, and ITV in species 2 reduces it.
(c) In either case, ITV increases a species’ relative fitness, as it increases the
species’ average ability to take up resources. Parameters: δ = 0.2, Rin = 6,
A = 5.5, τ = 0.5, a1 = 1, a2 = 3, h∗1 = 1, h∗2 = 3.2.

uptake for a species by reducing the number of individuals who are handling-
time limited. Thus, as a concave-up, hierarchical trait, ITV in handling
time improves a species? fitness (Fig. S7c). As with attack rate, handling
time is one element of a between-species trade-off, and therefore ITV affects
the stabilizing mechanism. However, variation in handling time has the
opposite impact that variation in attack rates did ? ITV in the opportunist?s
increases stability, whereas ITV in the gleaner decreases stability (Fig. S7b).
The reason is analogous to before. ITV increases a species? ability to acquire
resources when resources are abundant, but also makes it more able to reduce
resource fluctuations. Thus, an opportunist with a high ITV benefits from
resource variation, making it less like the gleaner; whereas a gleaner with
a high ITV also benefits from high resource variation, making it more like
the opportunist. Thus, like before, ITV that makes the functional response
lines more different increases stability, and ITV that makes the lines more
similar decreases stability.
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Figure S8: Relative nonlinearity with the trait affecting an individual’s lo-
cation on a trade-off axis. (a) We assumed that handling time and attack
rate traded off, and that both species were on the same trade-off curve
(though had different mean values along that curve). Above we show the
curve we used for this simulation. (b) Here we show the resource uptake of
each species at different levels of resource uptake. ITV tended to alter the
shapes of the curves. (c) ITV tended to weaken the stabilizing mechanism
by making species more similar; this result held up through all simulations
that we ran. (d) In this parameter set, ITV in either species helped species
1’s fitness. Parameters: δ = 0.2, Rin = 6, A = 5.5, τ = 0.5, µ∗1 = 2, µ∗2 = 0,
a1 = 0.3, a2 = 4, h1 = 0.3, h2 = 4, h3 = −2.5.
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Next we show the results of the case where the trait affected an indi-
vidual’s location on the attack-rate-handling-time trade-off, fig. S8. As
stated in the main text, an individual’s attack rate and handling time are
determined by their trait µj(T ) = µ∗j + T , such that

aj(T ) = a1 +
a2

1 + eµj(T )

hj(T ) = h1 +
h2

1 + eµj(T )−h3

(S89)

Interestingly, because of the nonlinearities in the trade-off function, the av-
erages of aj and hj are not the population median (and actually do not exist
on the trade-off curve, fig. S8a). We found that in this case, ITV tended
to weaken the stabilizing mechanism. Whether it improved or weakened a
species’ fitness depended on its location on the trade-off axis. And, in some
cases, it could have different impacts on different species, such as in fig. S8d,
where ITV in either species helps species 1.
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