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Supplementary Note 1 Illustration of Covariance test in
MacArthur-Rosenzweig model

In the section “An Illustrated Worked-out Example” of the main text, we illustate the covariance
criteria for Lotka-volterra dynamics. In this example, both rates are always higher when predator
abundance is high, therefore creating a balance. Of course, ecological dynamics can exhibit more
complex associations.

To establish the intuition why the covariance criteria holds for more complex scenarios, we
consider the MacArthur-Rosenzweig predator-prey model with a Type II functional response:

dP ( alN
=e¢

dat 1—|—ahN)P_dP’ (S1)

where N is the prey population size, P is the predator population size, r is the intrinsic growth
rate of the prey, K is the carrying capacity of the environment for the prey, a is the attack rate of
the predator, h is the handling time per prey item for the predator, e is the conversion efficiency
of consumed prey into predator biomass, d is the natural death rate of the predator.

In this model, the gain rate of the predator depends non-linearly on both predator and prey
abundances due to the Type II functional response. The figure below illustrates how gain and
loss rates vary with predator abundance:
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Supplementary Figure S1: Gain (left panel) and loss (right panel) rates for the predator P in the
MacArthur-Rosenzweig model. The covariances between gain/loss rates and abundance are equal,
satisfying the covariance criterion. The colors in left panel represent the prey abundance along the
trajectories.

We see that the nonlinearity in the gain rates can be sepearted into two parts: when prey
abundance N is low versus high. Although the gain rate does not always covary strongly with P
(specifically when N is low), the periods when N is high contribute significantly to the overall
covariance between gain rate and P. This is because the magnitude of the gain rate is much
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larger during these periods. Thus, when considering the entire time series, the positive covariance
during high N periods outweighs the weak covariance during low N periods. Thus, both gain and
loss rates covary positively with predator abundance. As an illustrative example, we include an
example using the MacArthur-Rosenzweig predator-prey model with a Type II functional
response:

dP ( alN
=e

— =e| ———— |P —dP 2
dt l—i-ahN) b (52)

where N is the prey population size, P is the predator population size, r is the intrinsic growth
rate of the prey, K is the carrying capacity of the environment for the prey, a is the attack rate of
the predator, h is the handling time per prey item for the predator, e is the conversion efficiency
of consumed prey into predator biomass, d is the natural death rate of the predator.
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Supplementary Note 2 Testing Discrimination Power of the
Covariance Criteria

2.1 Compliation of 40 functional responses

To facilitate evaluation, we have reproduced Table 1 in Novak & Stouffer (2021), specifying each
model’s per-predator prey consumption rate as a function of prey abundance (IV), predator
abundance (P), and relevant parameters.

Table Supplementary Table 1:

Functional-response models considered for describing the per-

predator rate at which prey are eaten as a function of prey abundance N, predator abundance P,
and the parameter(s).

Abbrevation Functional Response Reference
H1 alN Lotka 1925; Volterra 1927
LR oy Pimm 1982; Arditi & Ginzburg 1989
BWL1 a\/g Barbier et al. 2021
H2 e Holling 1959
MM 25 Michaelis et al. 1913
H3 L Holling 1965; Real 1977
HT + tanh(abN) Jassby & Platt 1976
GI +(1 — exp[—aN]) Gause 1934; Ivlev 1955
GIA +(1 — exp[—abN]) Aldebert et al. 2016a,b
GB %(1 — exp —% ) Gutierrez et al. 1984
alN
A0 b TN Abrams 1982
Al H% Abrams 1990
av N
A3 o/ Abrams 1990
SH A Sokol & Howell 1981
AG 14?(%]\1713 Sutherland 1983; Arditi & Ginzburg 1989
aN/\/P
CDAO e/ VP Cosner et al. 1999
2
AGK % Kratina et al. 2009
R aN" Rosenzweig 1971
HV C]”DJX Hassell & Varley 1969
H3R I Real 1977
AS T Novak & Stouffer 2021
HLB % Hassell et al. 1977
MH e Andrews 1968
T W Tostowaryk 1972
a ex ees
FHM W‘;P[dm Fqul et al. 1986
alN
A2 ANt N (CraN) Abrams 1990
2a N
558 1+a(b+c)N+y/1+aN(2(b+c)+aN(b—c)?) Jeschke et al. 2002
RGD ZalV Ruxton et al. 1992; Cosner et al. 1999
1+abN++/(1+abN)2+8ac(P—1)
N : .
BD WC(P—I) Beddlngton 19757 DL 1975
N .
CM 1+abN+c(P—al)+ach(Pfl) Crowley & Martin 1989
TTA aly Tyutyunov et al. 2008

1+abN+cP—(1—exp[—cP])
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Table Supplementary Table 1 — continued from previous page

Abbrev. Functional Response Reference

BWL2 aNvpv—1 Barbier et al. 2021

AA e Arditi & Akcakaya 1990
SBB T Schenk et al. 2005

W %(1 — exp|—9N ) Watt 1959

BDOR SR, Okuyama & Ruyle 2011

14+abN%+c(P—1)
alN"

CMOR 1+abN“+c(P—1)+abCN“(P—1) Okuyama. & Ruyle 2011

AAOR % Okuyama & Ruyle 2011
N

SN1 T abN T e(P—1) fabe(1—d)N(P1) Stouffer & Novak 2021

SN2 a1 tell—d)(Z—1) Novak & Stouffer 2021

14+abN+c(P—1)+abc(1—d)N(P—1)

2.2 Perfect Discriminatory Power without noise
We simulated the prey and predator dynamics for each of these functional responses. As shown

in Figure S2, all models produce all models produce persistent cyclic behavior, making it
challenging to differentiate between them.
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Supplementary Figure S2: Each panel shows the dynamics under different functional response.
Red denotes prey while blue denotes predator. All of them are in a stationary dynamics with
persistent cyclic behavaor.

To assess the discriminative power of the covariance approach, we analyzed the covariance
structures resulting from each model’s dynamics. Our findings, presented in Figure S3, reveal
that each functional response model exhibits a unique covariance pattern. This allows for clear
differentiation among the models based on their covariance structures, even when their time
series appear visually similar.
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[ fail [l pass

Tested functional response

True functional response

Supplementary Figure S3: Comparison of true and tested functional responses using the covariance
test. Each cell represents a test of the time series in Figure S2 where the true response (x-axis) is
compared to a tested response (y-axis). Blue indicates the tested response passed the covariance
test, gray indicates failure. Response abbreviations are as defined in Table 1.
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Supplementary Note 3 Type 1 vs Type 1I error of covariance
criteria

An important caveat, though, is that the results above are obtained under idealized, noise-free
conditions. To address potential real-world applications where measurement error or
environmental noise might influence the results, we performed additional simulations
incorporating varying levels of stochastic noise (ranging from 1% to 20%). As shown in Figure S4
below, the covariance approach successfully identified the correct model in most cases, even with
the added complexity of noise:

[ fail [ pass

Tested functional response

True functional response

Supplementary Figure S4: Same as Figure S3 expect with adding noise from 1% to 20%.
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Supplementary Note 4 Applying covariance criteria to complex
models

4.1 Logistic growth model

We first tested the classic logistic growth model:

dN N

— =rN(1 - — S3

dt ( K ) (S3)
In this model, the covariance criteria are non-parametric because the parameters can be canceled

out:
Cov(¥N,N)  Cov(z/ &K N? N)

(PNUN) — (zHCNZHN)
After canceling the parameters, we can test the model’s predictions directly against the data.

Despite the data being collected from a wide range of systems, almost none of the time series fall
on the one-to-one line predicted by the model (Figure S5):
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Supplementary Figure S5: Covariance analysis for the logistic growth model. Each point represents
a different time series, and colors denote different taxonomic groups in the dataset. The black line
represents the one-to-one line predicted by the model.

With statistical testing, we found that only 10 out of 172 time series pass the covariance test.
Since the z-score threshold (= 1.98) corresponds to a p-value less than 0.05, the proportion
10/172 = 0.058 is roughly what would be expected by chance alone. This suggests that the
logistic growth model does not adequately describe the dynamics of most populations in this
dataset.

4.2 Theta logistic model

Next, we analyzed the theta logistic model (Gilpin & Ayala, 1973; Thomas et al., 1980):

% = rN(l — (g)e) (S5)

S10



where 8 > 1. When 6 = 1, it reduces to the logistic growth model.

The covariance criterion is no longer non-parametric due to the unknown 6:

Cov(¥N,N) COV(WN1+97N) (S6)
FNIN) (LKTNIH)N)

We varied 6 from 1 to 5, as it is required to be larger than 1 to ve biologically meaningful. Figure
S6 shows the covariance test results:
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Supplementary Figure S6: Covariance test results for the theta growth model across varying values
of 6.

As 6 increases, the covariance with the loss rate deviates further from that with the gain rate.
Thus, despite the unknown parameter, the covariance analysis allows us to confidently reject the
theta growth model as an explanation for the observed data.

4.3 Sublinear growth model

We have tested this on recently proposed sublinear growth model (Hatton et al., 2024; Mazzarisi

& Smerlak, 2024):

dN

— =rN¥—bN

7 = (S7)
where 0 < k < 1. The parameter k accounts for the sublinear growth. Note that this model

cannot be reduced to the logistic growth model (there is no possibility of an N2 term).
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The covariance criterion is also not non-parametric due to the unknown k:

Cov(YN*,N)  Cov(BN,N)
(PNFY(N) — (BN)(N)

(S8)

We systematically varied k£ from 0 to 1:
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Supplementary Figure S7: Covariance test results for the sublinear growth model across varying
values of k.

At first glance, it may seem that the model predictions approach the one-to-one line and pass the
covariance test when k is very close to 1. However, this is an artifact. The system only appears
to pass the covariance test when it loses its sublinear character (i.e., when k ~ 1). Additionally,
as we discussed in response to Reviewer 1’s insightful comment below, the covariance criteria do
not apply when the gain and loss rates have the same functional form (here, k = 1) because there
will be no fltuating dynamics (please refer to our detailed reply below). Thus, we can still
confidently reject model with the covariance criteria.

The results above are not surprising. Most populations do not exist in isolation from other
species; it is simply that we only have data on one speciesc in this global dataset. However, using
the covariance criteria, we have made this verbal argument rigorous. As a practical application,
this results warns the danger of working with this dataset without accounting for the effects of
unobserved species (Pennekamp et al., 2019; Rogers et al., 2022).

S12



Supplementary Note 5 Covariance criteria and the nature of
fluctuations

A core assumption of the covariance criteria is that observed population fluctuations are
primarily driven by the deterministic interplay of gain and loss processes, rather than being
completely overwhelmed by stochastic noise. To illustrate the boundaries of this assumption, we
systematically test the method’s performance in the presence of three canonical types of
stochasticity.

We use the MacArthur-Rosenzweig predator-prey model as our testbed. This model generates a
stable limit cycle due to prey density-dependence (logistic growth) and a saturating predator
functional response (Type II). This is in direct contrast with the Lotka-Volterra predation model,
where the rapid extinctions can easily occur in the presence of stochastic noise. This allows for a
more meaningful analysis of how sustained stochasticity affects the covariance criteria.

The baseline deterministic MacArthur-Rosenzweig model is:

dN N aNP

dtTN<1_K)_1+ahN (59)
dP aNP

T TranN ™ (510)

where N and P are prey and predator abundances, r is the prey’s intrinsic growth rate, K is its
carrying capacity, a is the predator’s attack rate, h is its handling time, e is the conversion
efficiency, and m is the predator mortality rate.

We introduce three different forms of stochastic noise to this system and observe how the
proportion of failed validation tests changes as the noise intensity (o) increases. The results are
summarized in Figure S8.

5.1 Additive Noise

Additive noise represents fluctuations independent of population size, such as from constant
environmental perturbations or measurement error. The stochastic term added to the prey and
predator dynamics is odW;.

As theoretically expected, the covariance criteria are exceptionally robust to additive noise. The
noise term is uncorrelated with population size, so it does not interfere with the covariance
structure of the underlying deterministic dynamics. For both prey and predator, the proportion
of failed tests remains near zero across all tested noise intensities (Figure S8, left panels).

5.2 Multiplicative (Environmental) Noise

Multiplicative noise represents environmental fluctuations that affect per-capita demographic
rates (e.g., a good year increasing r). This common form of density-dependent noise is modeled
by adding a stochastic term of the form o NdW; to the prey dynamics and o PdW; to the
predator dynamics.

Here, the noise term is correlated with population size and thus contributes to the overall
covariance. When this noise becomes strong enough to rival the deterministic signal, the test
begins to fail. Our simulations show this clearly: the proportion of failed tests for both species
increases sharply as the noise intensity o rises, approaching 100% failure at higher noise levels
(Figure S8, middle panels).
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5.3 Demographic Noise

Demographic noise arises from the inherent randomness of individual birth and death events.
The standard deviation of this noise scales with the square root of the population size, modeled
with a stochastic term of the form ov NdW;.

Like multiplicative noise, demographic noise is density-dependent and can disrupt the covariance
criteria. However, because its magnitude scales more slowly with population size (\/N vs. N), its
impact is less severe at equivalent o values. The proportion of failed tests increases with noise
intensity but at a much slower rate than for multiplicative noise, particularly for the predator
(Figure S8, right panels). This demonstrates that the stabilizing features of the
MacArthur-Rosenzweig model make it resilient to moderate levels of demographic stochasticity.

Additive Multiplicative Demographic

100%
75%
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Joyepaid
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Supplementary Figure S8: Performance of the covariance criteria for the MacArthur-
Rosenzweig model under different noise structures. Each panel shows the proportion of
simulations that failed the covariance test (z-score > 1.96) as a function of increasing noise intensity
(o). Rows correspond to the predator and prey, while columns represent the type of stochastic
noise. Error bars denote the standard error of the proportion. The method is robust to additive
noise but sensitive to high levels of density-dependent (multiplicative and demographic) noise, with
the effect being most pronounced for multiplicative noise.

These simulation results confirm that the validity of the covariance criteria depends crucially on
the signal-to-noise ratio. The method is robust to additive noise but will be compromised when
density-dependent noise (multiplicative or demographic) is strong enough to overwhelm the
deterministic dynamics. This is not a failure of the method, but rather a fundamental limit of
any approach attempting to infer deterministic rules from highly stochastic data.
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Supplementary Note 6 Scenarios Where Covariance Criteria Do
Not Apply

The covariance criteria, while powerful, do have limitations in their applicability. Here, we
outline scenarios where the method might not be suitable or requires careful consideration.

6.1 System without fluctuation

Our approach is specifically designed for systems exhibiting fluctuating dynamics—situations
where gain and loss rates vary over time, leading to alternating periods dominated by gains and
losses. In models where gain and loss rates are governed by identical functions, the net change
would lack the necessary fluctuations for our covariance criteria to be meaningfully applied.

To illustrate this, consider a population model described by identical functional forms of gain and
loss rates: AN

where where r is the per capita birth rate and d is the per capita death rate:

e If r = d: The net growth rate is zero, and the population remains at equilibrium
indefinitely, with no fluctuations occurring. In this scenario, our method cannot extract
meaningful insights because fluctuations are essential for covariance analysis. This is not a
limitation unique to our approach; any method would struggle to reveal underlying
dynamics in a system that remains perpetually at equilibrium.

e If r 2 d, The system would either grow exponentially or decline to extinction, again
without the necessary fluctuations in gain and loss rates over time.

Therefore, our approach would not erroneously validate models where gain and loss rates follow
identical functions, as the requisite dynamic variability is absent.

6.2 Ecological systems with strong trends

The covariance criteria are rigorously applicable to stationary systems, where the statistical
properties of the system remain constant over time, or to cyclostationary systems, where
statistical patterns repeat predictably (e.g., with seasons). We have tested this on the empirical
datasets used in this paper, and they are mostly stationary.

In this context, it is worth noting that many ecological systems can exhibit non-stationary
dynamics. A prime example is populations experiencing consistent growth or decline, which
violates the stationarity assumption. In such cases, applying the covariance criteria directly to
the entire time series might lead to misleading results.

As a simple illustrative example, consider the logistic growth model:

dN
5 =N - N/K) (S12)

We simulate this model with parameters r = 0.5 and K = 1000. Applying the covariance criteria
to this simulated data results in a z-score greater than 7. This indicates that the covariance with
gain and the covariance with loss are significantly different, which is expected given that, at least
initially, logically growing systems have a higher gain than loss rate.
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6.3 Unobserved Direct Interactions or Frequent Directional Perturbations

To effectively utilize the covariance criteria, it is crucial to have knowledge of all the key variables
influencing the gain and loss terms, particularly any direct interactions with other species or
significant external perturbations. The covariance criteria assume that external perturbations,
such as environmental fluctuations, are statistically independent of the population abundance. If
there are significant unobserved direct interactions or frequent and strong external perturbations
that correlate with population abundance, the gain and loss rates are influenced by unknown
factors, and the method might encounter difficulties in differentiating between various models or
identifying model inadequacies.

6.4 Fluctuation driven by noise instead of deterministic dynamics

As we detailed in Appendix 5, our covariance criterion assumes that fluctuations in population
size are primarily driven by the inequality between gain and loss rates. As a concrete example,
we show the applicability of the covariance criterion varies based on the type of stochasticity:

e Fluctuations Driven by White Noise. When fluctuations are driven purely by white
noise (represented by additive stochasticity), the correlation between the gain rate and the
population size is effectively zero, as is the correlation between the loss rate and the
population size. In such cases, both sides of the covariance criterion are zero, providing no
useful information.

As a concrete example, consider the stochastic logistic growth model with additive white
noise:

dN = rN(1 — N/K)dt + odW (S13)

We ran a simulation of this model:

100.2
100.14

100.0

Population Size

©
©
©

99.81

99.71— . - - r r
0 10 20 30 40 50
Time

Supplementary Figure S9: Time series of population size N with fluctuations driven by white noise.

In this case, the normalized covariance between gain and abundance is 1078, and that
between loss and abundance is 10~7—both effectively zero. Therefore, the covariance
criterion does not provide meaningful information in this scenario, as predicted.

e Fluctuations Driven by Density-Dependent Noise. When fluctuations are driven by
density-dependent noise, such as demographic and multiplicative stochasticity, this can
introduce correlations between the gain/loss rates and the population size. However, these
correlations arise from the noise itself rather than from the deterministic dynamics,
potentially leading to misleading conclusions when applying the covariance criterion.
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As a concrete example, consider the stochastic logistic growth model with environmental
noise:

dN = rN(1 — N/K)dt + o NdW (S14)

We ran a simulation of this model using the same random seed as before:
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Supplementary Figure S10: Fluctuations driven by density-dependent environmental noise.

Although the time series appears visually similar to the previous case, the covariance
structure is different. The normalized covariance between gain and abundance is 0.01, and
that between loss and abundance is 0.02, resulting in a high z-score of 45. These non-zero
covariances are induced by the noise term rather than the deterministic gain and loss
processes. Therefore, applying the covariance criterion without accounting for the nature of
the noise may lead to incorrect conclusions.

As another example, consider the stochastic logistic growth model with demographic noise:
dN = rN(1 — N/K)dt + o/ NdW (S15)

We ran a simulation of this model using the same random seed as before:
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Supplementary Figure S11: Fluctuations driven by density-dependent demographic noise.

Similarly, although the time series appears visually similar to the previous case, the
covariance structure is different (z-score = 19).

o Fluctuations Driven by Deterministic Components (e.g., Seasonal Variations).
When fluctuations are influenced by deterministic components, such as seasonal changes in
carrying capacity, the covariance criterion remains applicable. In these cases, the
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correlation between gain/loss rates and population size is meaningful and reflects the
underlying deterministic dynamics.

Consider the stochastic logistic growth model with a periodically varying carrying capacity:
dN =rN(1 — N/K)dt + cNdW (516)

where K o exp(sin(t)), introducing seasonal fluctuations in the carrying capacity. This
choice is simply for illustrative purpose. Although the noise is density-dependent (due to
the N term in o NdW), it is relatively negligible compared to the deterministic seasonal
effects.

We ran a simulation of this model:

150

Population Size

50

Time

Supplementary Figure S12: Fluctuations driven by deterministic seasonal variations.

In this example, the system passes the covariance test with a z-score of 0.33, demonstrating
that the covariance approach can be effectively used in single-species models subjected to
stochasticity around equilibrium when deterministic factors influence the fluctuations. The
key is that deterministic components (e.g., seasonal changes in carrying capacity) maintain
a meaningful correlation structure between gain and loss rates and the population size.

In light of these analyses, let us revisit the widespread failure of the logistic model demonstrated
in Appendix 4.1. It can be interpreted in two ways:

o Interpretation A: The Model is Structurally Wrong. The most direct interpretation is that
the fundamental assumptions of the logistic model (i.e., linear gain and purely quadratic
loss) do not correctly describe the deterministic forces governing these real populations.
The systems are likely regulated by more complex interactions, different forms of density
dependence, or external drivers not included in the model.

e Interpretation B: The Dynamics are Noise-Dominated. Alternatively, as outlined in F.4, it
is possible that for some of these populations, the logistic model is a reasonable
approximation of the deterministic dynamics, but the observed fluctuations are so heavily
dominated by environmental or demographic stochasticity that the deterministic signal is
lost. In this scenario, while the model’s deterministic part might be “correct,” it is
dynamically irrelevant for explaining the observed variance, and thus the model as a whole
is still not a useful tool for understanding that system’s fluctuations.

In either case, the conclusion is the same: the standard logistic model, when applied to these
empirical time series, is not a valid or useful representation of the observed dynamics. The failure
of the test in D.1 is therefore a robust result, and F.4 provides a deeper understanding of the
potential reasons for such a failure.
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6.5 Covariance criteria does not apply to non-linear transformed dynamical
equation

Log-transformations are commonly used in ecological analyses due to their ability to linearize
multiplicative processes and stabilize variances. However, in the context of our covariance criteria
framework, log-transformations introduce fundamental challenges.

Consider the continuous-time Lotka-Volterra prey dynamics:

dx
= rr — 1
" TT — ATy (S17)

For these dynamics, our covariance criterion is given by:

Cov(x,rz) _ Cov(x,axy)
(z)(rz) (z)(azy)

This criterion is derived under the assumption of additive stochastic events in population sizes
Hilfinger et al. (2016). Specifically, we represent the continuous dynamics using discrete
stochastic events:

(S18)

rT azy

T g4 dand ¢ T x4 (519)

Here, § represents a small increment, while —%— and —2Y— represent the probabilities per unit
rr+ary rr+ary

time of gain and loss rates, respectively. For the discrete dynamics, the covariance criteria
derived in Hilfinger et al. 2016 reads at:
C ) C
ov(z,rx) _ 0 ov(z, azxy) (820)
() (rz) — (x) (z)
As ¢ approaches zero (considering infinitesimally small changes, especially since z typically
represent density), the term % becomes negligible, and we recover our covariance criterion (Eqn.

S18) in the continuous limit.

When we apply a log-transformation to the variables (Z = log(x),y = log(y)), the prey dynamics
become:

dz

— =r —aexp(y S21

= b(7) (s21)
While this transformation linearizes the multiplicative process and simplifies the equation, it
fundamentally alters the nature of the discrete stochastic events. The corresponding discrete
events for the log-transformed variable is:

. a exp()
F T 5y Sy and & Y g g (S22)

Here, dy is some fixed increment in Z. In terms of the original variable x, these events correspond
to multiplicative changes:

re+ax ~ rxtazx — ~
T ey and TS om0 (S23)

Although the transition probabilities remain the same in both models, the nature of the events
differs fundamentally. This distinction is crucial because the covariance criterion established in
Hilfinger et al. (2016) only applies to additive discrete events, not multiplicative or other
nonlinear ones. Therefore, we must carefully consider how our continuous model maps onto
discrete events. Ecological studies indicate that changes in species abundance x are typically
additive, such as individual births and deaths. In contrast, while treating log(x) as an additive
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variable is mathematically feasible, it is not ecologically meaningful because it implies that x
changes multiplicatively, which does not align with the ecological processes.

It might be unclear why these differences matter if both processes lead to the same continuous
dynamics. An analogy may help clarify this point. Consider two functions, f(x) = 0 and

g(z) = x, both of which equal zero when z = 0. However, their derivatives at z = 0 differ
significantly (f/(0) = 0 for the constant function and ¢’(0) = 1 for the linear function), leading to
different behaviors near x = 0. Similarly, we are examining the limiting case of the covariance
criterion, not just the limiting behavior of the dynamics. Specifically, while the continuous
dynamics remain the same after a log-transformation, the underlying discrete events—and thus
the infinitesimal fluctuations relevant to our covariance criterion—are fundamentally different.

In conclusion, while the covariance criteria offer a powerful and versatile tool for model
validation, it’s essential to be mindful of its limitations and apply it judiciously, as is the case for
any computational method.
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Supplementary Note 7

7.1 Visualizing raw data
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Supplementary Figure S13: Time
Blasius et al. (2020).

Reverse engineering the nature of
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series of prey and predator abundances in 10 replicates
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7.2 Stationarity test

Stationarity test
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Supplementary Figure S14: Stationarity test using augmented Dickey-Fuller test. P value less than
0.05 indicates evidence for stationarity.
7.3 Moving-window analysis

We conducted a moving window analysis on the ten replicates from Blasius et al. (2020). We
varied the window length from 5 up to the maximum length of each time series. Within each
window, we computed the z-score of the covariance test.
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Supplementary Figure S15: Moving window analysis with Lotka-Volterra dynamics. The
analysis was performed on the ten replicates from Blasius et al. (2020). The left panel shows results
for the prey dynamics, while the right panel shows results for the predator dynamics. The x-axis
represents the window length, and the y-axis displays the z-score of the covariance test. The black
line indicates the average z-score across windows, and the shaded areas (ribbons) represent the
50%, 80%, and 95% confidence intervals.

As shown in Figure S15, the z-scores remain relatively constant across different window lengths
for most replicates. This consistency suggests that our z-score approach is robust to variations in
sample size within the tested range. Therefore, we believe that our results are unlikely to be an
artifact of short time series lengths.
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7.4 Testing alternative models

To conclusively determine whether ratio dependence is the source of the model’s invalidity, it is
essential to include both a saturating prey-dependent model and a non-saturating
ratio-dependent model in our analysis.

To address this, we have expanded our analysis to include the Rosenzweig-MacArthur model (a
saturating prey-dependent model) and the Hassell-Varley model (a non-saturating
ratio-dependent model) using the datasets from Blasius et al. (2020). Following our solution to
uncancellable parameters (Appendix 4), we systematically varied the parameters of these models
spanning one order of magnitude to thoroughly test their validity. Figures S16 and S17 show our
findings.

Lotka—Volterra Lotka—Volterra :
without self-regulation with self-regulation Ratio-dependent
10.0
7.5
5.0
25 e Y.y
o 0.0
o 1 2 3 456 7 8 910
8 Rosenzweig—MacArthur Hassell-Varley
[
N
10.0
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5.0
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123 456 7 8 9101 2 3 45 6 7 8 910
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Supplementary Figure S16: Covariance test for prey dynamics across ten experimental replicates.
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Supplementary Figure S17: Covariance test for predator dynamics. Same as Figure S16
expect we test the predator dynamics.

To intrepret the results:

e Rosenzweig-MacArthur model. The analysis shows that Rosenzweig-MacArthur model
captures the predator dynamics well (Figure S17), but not the prey dynamics (Figure S16).
This suggests that while a saturating prey-dependent functional response may well-describe
the dynamics of the predators, it may not fully capture the prey population dynamics in
this system. If the functional responses for prey and predator are assumed to be symmetric,
then the Rosenzweig-MacArthur model fail to describe the dynamics.

o Hassell-Verley model. The Hassell-Varley model does not perform well for either prey or
predator dynamics. This indicates that a non-saturating ratio-dependent functional
response is not appropriate for describing the dynamics observed in this case study.

o Lotka-Volterra model. The Lotka-Volterra model without self-regulation performs well
for most experimental replicates except for replicates 8, 9, and 10 for the prey dynamics. In
these three replicates, the environmental conditions were not constant, in contrast to the
other seven replicates. This may explain why the Lotka-Volterra dynamics with
self-regulation explain the prey dynamics better in these three cases.

In conclusion, it reinforces our original conclusion that the invalidation of the ratio-dependent
model in the case study.
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Supplementary Note 8 Comparison with traditional methods

Here we show the results with classic valiodation methods.

8.1 Regression on inferred deriatives

Figure S18 below illustrates the results:
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Supplementary Figure S18: Time series of prey and predator abundances using regression on
inferred derivatives. The thick lines show the observed dynamics, while the dashed lines show the
best fitted models. The models capture the mean trends but not the oscillatory behavior. Columns
represent different species (prey and predator), and rows represent the 10 replicates.

Despite the optimization and smoothing techniques, the regression-based methods captured only
the mean trends and failed to reproduce the oscillatory behavior observed in the empirical data.
We have also explored Lasso and Ridge regression to enhance model performance by mitigating

overfitting and handling noise, but they did not provide any improvement.

8.2 Bayesian nonlinear ODE modeling

Given the computationally intensive nature of this approach, we have only used it for the main
expeirment (replicate 1) in Blasius et al. (2020). We expect similar results for other replicates,
although further investigation is needed to confirm this. Figure S19 belows shows the posterior
predictive checks of the Bayesian model:
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Supplementary Figure S19: Bayesian nonlinear ODE model fit to prey and predator abundances.
The observed values are shown in orange, while the black line represents the posterior mean
prediction with 50%, 80%, and 95% credible intervals (shaded areas). The model captures the
main trends but not the oscillatory behavior

The Bayesian model effectively captured the main trends in the data but, similar to the
regression approach, failed to reproduce the observed oscillations.

8.3 Symbolic regression with deep learning

For the main experiment (replicate 1) in Blasius et al. (2020), the best inferred equations read:

AN

—— = —0.2710N + 0.0048P (S24)
apr -

3 = 14:2024(1 +0.0034P)? sin(~1.0600 + 21.8434N) (S25)

These equations lack ecological interpretability and do not align with any known predator-prey
model. The model’s fit to the data was also poor, as illustrated in Figure S20 below:
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Supplementary Figure S20: Symbolic regression results for prey (z¢) and predator (z1) abundances.
The model fails to capture the observed dynamics.

Across all ten replicates, the R? values ranged from —0.54 (the minus sign is not a typo) to 0.06,
indicating inadequate model performance. This suggests that the method, despite its
sophistication, struggled with ecological data and produced non-generalizable results.
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Supplementary Note 9 Dissecting ecological and evolutionary
processes

We analyzed 21 two-species consumer-resource time series (Barnet et al., 1981; Bohannan &
Lenski, 1997; Dulos & Marchand, 1984; Canale et al., 1973; Jost et al., 1973; Van den Ende,
1973; Tsuchiya et al., 1972; Gause, 1934; Luckinbill, 1973, 1974; Veilleux, 1976; Boraas, 1980;
Yoshida et al., 2003, 2007; Huffaker et al., 1958; Utida, 1957). These datasets were gathered by
Hiltunen et al. (2014).

S29



9.1 Visualizing raw data

Figure S21 shows the time series in the system.
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Supplementary Figure S21: Time series of prey and predator abundances.

9.2 Stationarity test

Non-stationary Stationary

w/ rapid evolution

predator 0.23 0.77
prey 0.23 0.77
w /o rapid evolution

predator 0.38 0.62
prey 0.12 0.88

Table Supplementary Table 2: Summary of proportions of time series that are non stationary and
stationary.
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9.3 Moving-window analysis

To understand the effect of time series length, we performed a moving-window analysis. Each
window starts at the origin of the time series. We progressively increased the length of these
windows, beginning with a small initial window and expanding until the full dataset was
encompassed. This approach allowed us to evaluate the performance of our covariance criterion
across different time spans within the dataset.
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Supplementary Figure S22: Statistical test of covariance criteria.
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Supplementary Note 10 Detecting signals of higher-order
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Supplementary Figure S23: Time series.

The dynamics for all species are stationary, with p value < 0.01 with augmented Dickey-Fuller
test.
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Supplementary Figure S24: Detecting signals of higher-order interactions. We apply the
covariance criteria to study the presence of higher-order interactions in a rocky intertidal commu-
nity (Beninca et al., 2015). Specifically, whether crustose algae and barnacles interact with mussels
exclusively through pairwise interactions or whether a higher-order interaction is present. Three
models are evaluated: pairwise interactions only (blue), higher-order interaction only (yellow),
and a combination of both (red). The x-axis denotes different covariance types, while the y-axis
shows normalized covariance values derived from 1000 bootstrapping replicates. The gray box-
plot represents the covariance with loss rate, assumed constant across models. The higher-order
only model (yellow) exhibits significant mismatch in covariance values, indicating its inadequacy.
The pairwise interaction model (blue) shows closer alignment but still differs statistically from the
loss covariance. Remarkably, the model incorporating both pairwise and higher-order interactions
(red) perfectly matches the loss covariance. These findings strongly suggest that both pairwise and
higher-order interactions between crustose algae, barnacles, and mussels play a significant role in
influencing mussel dynamics within this community.
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