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Rigorous validation of ecological models 
against empirical time series
 

Chuliang Song    1   & Jonathan M. Levine    2

The complexity of ecosystems poses a formidable challenge for validating 
ecological models. The prevailing inability to falsify models has resulted 
in an accumulation of models but not an accumulation of confidence. 
Here we introduce an approach rooted in queueing theory, termed the 
covariance criteria, that establishes a rigorous test for model validity 
based on covariance relationships between observable quantities. 
These criteria set a high bar for models to pass by specifying necessary 
conditions that must hold regardless of unobserved factors. We test 
our approach using observed time series data on three long-standing 
challenges in ecological theory: resolving competing models of predator–
prey functional responses, disentangling ecological and evolutionary 
dynamics in systems with rapid evolution and detecting the often-elusive 
influence of higher-order species interactions. Across these diverse case 
studies, the covariance criteria consistently rule out inadequate models, 
while building confidence in those that provide strategically useful 
approximations. The covariance criteria approach is mathematically 
rigorous and computationally efficient, making it applicable to existing 
data and models.

Population abundance is the ever-present variable in the equation of 
life on Earth. To decipher the drivers behind the fluctuations of popula-
tion abundance, ecologists construct mathematical models—simpli-
fied representations that capture the key dynamics of an ecosystem 
while making judicious sacrifices of the full complexity of Nature. 
This synergy between data and modelling forms the foundation of 
contemporary ecology1,2. Yet, this endeavour faces a fundamental 
challenge: how can we confidently adjudicate which models provide 
useful approximations of Nature, and which are oversimplified cari-
catures? The stark reality is that even for predator–prey interactions, 
there exist more than 40 distinct models of how predator feeding 
rate depends on prey abundance (reviewed in ref. 3). This plethora of 
alternatives stems from the prevailing inability, using conventional 
practices, to decisively validate some models and invalidate others 
against empirical data.

To illustrate the limitations of current approaches, consider a 
textbook example of the coupled population dynamics of snowshoe 

hares and Canadian lynx in boreal forests4 (Fig. 1a). The dynamics is 
classically modelled using the Lotka–Volterra predator–prey model 
(Fig. 1b). A common validation approach is to compare the qualita-
tive behaviours between data and model prediction (Fig. 1c). In this 
example, the Lotka–Volterra model predicts coupled cycles of predator 
and prey abundances with a fixed amplitude and period length—the 
hallmark of the ‘predation cycle’ in graphical predator–prey theory5,6. 
The qualitative resemblance of the data to these predicted cycles pro-
vides some confidence in the validity of the model. Another common 
approach is fitting models to data and assessing goodness-of-fit or fore-
casting power (Fig. 1d). For this example, the predator–prey dynamics 
can be approximated with a given set of parameters in Lotka–Volt-
erra dynamics, providing support for the proposed model. These two 
approaches represent the mainstream for validating models against 
time series data.

But what if the model and data diverge? Does that mean the 
model is invalidated? Returning to the hare–lynx example, over longer 
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confidence in those that provide useful approximations and guide the 
development of more robust ecological theory.

Covariance criteria for model (in)validation
In this section, we introduce the theoretical framework for the covari-
ance criteria approach and demonstrate its application to ecological 
models and data. We start by presenting the core concepts and math-
ematical foundations. We then illustrate how to apply the framework 
to a simple worked-out example with statistical methods. We then 
discuss the advantages of this approach over current model validation 
practices, as well as the caveats.

General theoretical framework
The fluctuations in population abundances that we observe in 
Nature arise from a fundamental imbalance between two opposing 
forces: the gain rate, which encompasses processes that increase 
population size (for example, births, immigration and mutualism) 
and the loss rate, which includes processes that decrease it (for 
example, deaths, emigration and competition). In general, ecologi-
cal models describing the dynamics of population abundance can be 
partitioned in the following form: 

dx
dt = R + − R − + ξ ,

Population abundance

Gain rate Loss rate

Stochastic noise

where R+ is the gain rate, R− is the loss rate and ξ is the stochastic noise. 
The gain rate R+ and loss rate R− can be complex functions of both biotic 
(for example, interactions with other species) and abiotic (for example, 
environmental) factors. This partitioning is not arbitrary; it follows 

timescales than shown in Fig. 1, the observed population cycles diverge 
from the classic Lotka–Volterra predictions: in fact, the data suggest 
a ‘reversed cycle’, implying the nonsensical result that hares eat lynx7. 
However, interpreting such discrepancies is fraught with ambiguity. 
One possibility is that these deviations in qualitative patterns invalidate 
the core assumptions of the Lotka–Volterra framework, demanding an 
alternative theoretical model for the entire predator–prey system (case 
1 in Fig. 1e)8. Alternatively, the model could accurately describe the 
dynamics of one species (for example, lynx) while failing for the other 
(for example, hares) due to missing factors specific to that species 
(case 2 in Fig. 1e)9. In contrast, it is also possible that the model correctly 
describes the lynx–hare interaction, but fails to include all the other 
variables driving the observed dynamics. These could be other uncon-
trolled biotic factors (case 3 in Fig. 1e), such as the hare–vegetation 
interaction10 or disease epidemics. Or it could be that there are other 
uncontrolled abiotic factors (case 4 in Fig. 1e), such as environmental 
fluctuations altering species parameters over time11–13. In sum, current 
practices make it challenging to judge whether the model is truly valid, 
partially valid or simply wrong.

This long-standing challenge of model validation has plagued ecol-
ogy, leaving the true scope of even classic models such as the Lotka–
Volterra formulation unresolved. Here we address this fundamental 
problem in ecological modelling by introducing a method originally 
developed by biophysicists14. In essence, this method uncovers the 
(mostly unique) inherent structure of temporal covariance between 
model elements, a constraint that remains invariant regardless of 
unknown ecological factors. By leveraging this inherent constraint, we 
can make strong statements about model validity. In the following sec-
tions, we first introduce the theoretical foundations of this approach. 
We then demonstrate its discriminatory power by applying it to three 
key problems in ecology: resolving debates on the functional form of 
predator–prey interactions, disentangling the interplay of ecology 
and rapid evolution, and detecting signals of higher-order species 
interactions. Through these case studies, we illustrate how this rigor-
ous test of model validity can decisively invalidate flawed models, build 
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Fig. 1 | Common approaches in ecological model validation and limitations. 
a,b, A classic example of predator–prey dynamics: observed data, the 
population fluctuations of snowshoe hares (blue) and Canada lynx (red) 
(a) and the Lotka–Volterra model as a candidate to describe the underlying 
processes (b). c,d, Two validation approaches: comparing qualitative 
behaviours (for example, cycles in both data and model) (c) and fitting  
the model to the data to examine its explanatory or predictive power (d).  

e, Challenges in interpreting validation results. Pitfalls in falsification when 
mismatched are: a mismatch between a model and data does not necessarily 
prove the model is entirely incorrect (case 1), as the discrepancy could 
stem from the model being partially incorrect (case 2), unobserved biotic 
interactions (case 3) or abiotic influences (case 4). Current methods often 
cannot decisively determine which of these cases is responsible for the 
mismatch. Illustrations: mashikomo/stock.adobe.com.
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directly from the mathematical formulation of a model, with R+ com-
prising the sum of all positive terms and R− the sum of the absolute 
values of all negative terms. The specific structure of a model therefore 
represents a distinct, testable hypothesis about the underlying gain 
and loss processes (Methods). Any meaningful ecological model must 
include this combination of gain and loss; otherwise, the model would 
predict either indefinite growth or inevitable extinction.

We can illustrate this partitioning using the predator dynamics 
from the Lotka–Volterra model:

dx
dt = δyx − γx ,

Gain rate Loss rate

where x denotes the predator and y 
denotes the prey.

When gain and loss rates are perfectly counterbalanced, the popu-
lation maintains a steady state or equilibrium. However, such perfect 
balance is seldom encountered in the real world. Instead, we witness 
periods where gains outweighs losses, leading to population growth, 
interspersed with periods where losses dominate, causing population 
decline. This interplay between gains and losses generates the dynamic 
fluctuations in abundance that characterize most natural populations.

While it is intuitive that population abundance (x) fluctuates based 
on the balance of gains (R+) and losses (R−), mathematically formalizing 
this link presents a challenge. The core difficulty stems from the fact that 
the gain–loss imbalance (R+ − R−) directly dictates the instantaneous rate 
of change in abundance (dx

dt
), not the absolute abundance (x) at any given 

time. In plain words, the fundamental equation of population dynamics 
(equation (1)) connects the processes driving change (gain and loss rates) 
to the speed at which abundance changes, rather than directly to the 
current amount of abundance itself. This makes it less straightforward 
to quantify how the underlying gain and loss rates relate to the popula-
tion abundance as it varies over time. To overcome this and directly 
assess the relationship between the gain/loss processes and the raw 
population abundance, we use covariance. Covariance provides a statisti-
cal measure of how two variables—in this case, a rate (such as R+) and the 
absolute abundance (x)—tend to fluctuate together over the observed 
time series. For instance, if gain rates consistently tend to be higher when 
population abundance is high, these two variables exhibit a positive 
covariance. Crucially, for populations exhibiting bounded fluctuations, 
the loss rate must also, on average, increase when abundance is high to 
counterbalance the increased gain. This necessary regulatory feedback 
implies that the loss rate and population abundance should also covary 
positively. By examining these covariance relationships, specifically how 
the gain and loss rates covary with abundance, we can derive quantitative 
criteria to test the structural assumptions of ecological models.

Formally, this constraint, while grounded in sophisticated math-
ematics, is captured in a surprisingly simple equality14:

Cov(R+, R)

�R+� �x� �R–� �x�
=

Cov(R−, R)

Covariance between gain and abundance

Mean gain rates

Covariance between loss and abundance

Mean loss rates
Mean abundance

where Cov 
denotes covariance and < > denotes mean (Fig. 2a). In words, the equal-
ity (equation (3)) essentially states that the normalized covariance 
between gain rate and abundance is mirrored by the normalized covari-
ance between loss rate and abundance. Note that this normalized 
covariance is distinct from the correlation coefficient, which is normal-
ized by standard deviations rather than means.

Mathematically, this equality is known as the second-order 
moment equation derived from Little’s law in queuing theory15,16. It 

is a continuous-time formulation of the more general constraints14. 
Specifically, our equation (3) can be derived from their equation (6) 
by setting the two state variables to be the same (i = j), which simpli-
fies the cross-correlation to an autocorrelation, and then taking the 
continuous-time limit where the discrete time step vanishes. We adopt 
a continuous framework because population dynamics in ecology are 
commonly modelled with differential equations and empirical data 
often represent continuous variables such as biomass or density (which 
do not have a direct discrete interpretation).

An illustrated worked-out example
This covariance structure serves as a simple test to validate or invali-
date a model. If the model accurately reflects the observed ecological 
dynamics, the equality (equation (3)) will hold and the model passes the 
test. If the data and constraint do not match, the equality will not hold 
and the model is falsified. We call this approach the covariance criteria.

We next illustrate how the covariance criteria works in practice 
using the predator dynamics from the Lotka–Volterra model (equation 
(2)). The model defines the gain rate as proportional to the product of 
prey and predator abundances (representing successful predation 
leading to reproduction), while the loss rate is proportional to predator 
abundance alone (representing mortality). Applying the general covari-
ance constraint (equation (3)) to this model, we get:

Cov(δyx, x)
〈δyx〉 〈x〉 〈γx〉 〈x〉= .Cov(γx, x)

Since the mean and 
covariance operators are linear, we can simplify this further by cancel-
ling out the constant parameters δ and γ:

cov(yx, x)
⟨yx⟩⟨x⟩ = cov(x, x)

⟨x⟩⟨x⟩ . (5)

This simplification is powerful: it allows us to test the structural form 
of the Lotka–Volterra model using only the observed time series data 
for predator (x) and prey (y) abundances, without needing to estimate 
the parameter values δ and γ. In such cases, the covariance criterion 
provides a non-parametric test of the structure of the model.

We next test this model using a subset of data from a planktonic 
predator–prey system17 (Fig. 2b). The data include time series meas-
urements of both predator and prey abundance. Although we cannot 
directly observe the gain and loss rates in the data, the model allows us 
to infer them at each time point on the basis of the observed abundance 
data (Fig. 2c). For instance, the gain rate is inferred as the product of 
prey and predator abundance at each time point (recall that the param-
eter in front of this product cancels out in equation (5)).

The covariance criteria then examine how these inferred gain 
and loss rates covary with the observed predator abundance (Fig. 2c). 
The scatter plot of inferred gain rate against predator abundance 
shows more scatter compared with the plot of inferred loss rate against 
predator abundance. This is expected because the predator’s gain rate 
depends on both prey and predator abundance, while the loss rate 
depends solely on predator abundance. However, it is important to 
remember that the covariance criteria rely on the calculated covari-
ance values to provide the quantitative measure of the relationship 
between the rates and predator abundance, not the visual spread of 
the scatter plots. In this specific example, both normalized covariances 
turn out to be 0.234. This suggests that the Lotka–Volterra model, in 
this case, aligns with the covariance criterion and adequately explains 
the observed predator dynamics.

While the Lotka–Volterra example illustrates the use of the covari-
ance criteria when the model contains simple gain and loss terms, the 
approach is equally valid for models with more complex relationships 
between gain or loss terms and species abundance. As an example, 
Supplementary Note 1 shows that the covariance criteria can be used 

(2)

(3)

(4)
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to evaluate the MacArthur–Rosenzweig predator–prey model with a 
type II functional response.

Discriminatory power of the covariance criteria
The covariance criteria work under remarkably broad conditions, 
thanks to the generality of Little’s Law in queuing theory15,16. It applies 
rigorously to stationary systems, where long-term statistical patterns 
remain constant over time, regardless of whether they follow typical 
Markovian dynamics (where the future depends only on the present, as 
most ecological models do) or more complex non-Markovian dynam-
ics (where the history of the ecosystem influences its future, as in the 
presence of time delays). Moreover, the criteria also hold for some 

non-stationary dynamics, such as cyclo-stationary systems (where 
statistical patterns repeat predictably, as with seasons).

One might assume that such broad applicability renders the crite-
ria a mere abstract principle with limited practical utility. Surprisingly, 
as we show here, it imposes a stringent test for models to pass. When 
the biophysicists who pioneered this method applied it to gene expres-
sion data, nearly all published models failed to meet the criteria18. 
This high bar means that when a model does pass the test, we can have 
strong confidence in its validity as a useful approximation of the true 
dynamics of the system.

The stringency of the covariance criteria arises because differ-
ent ecological model structures typically yield distinct covariance 
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Fig. 2 | Covariance criteria for model validation. a, The general principle of 
covariance criteria (theoretical framework): if a model accurately captures the 
underlying processes, the normalized covariance between the gain rate and 
abundance should equal the normalized covariance between the loss rate and 
abundance. b–e, The workflow of this approach to assess whether the Lotka–
Volterra model can describe predator dynamics in a specific system: a subset 
of the predator–prey observed data17 (b); model for predator demonstrating 
how the Lotka–Volterra model partitions predator dynamics into gain rate 
(terms causing abundance increase) and loss rate (terms causing abundance 
decrease) (c); integrating the modelled gain and loss rates with the observed 
data to infer the empirical gain and loss rates across time (d); and examining 
covariance structure by calculating the normalized covariances between the 

inferred gain/loss rates and predator abundance (e). If these covariances are 
equivalent, it strengthens confidence in the validity of the model. Conversely, 
significant discrepancies indicate the inadequacy of the Lotka–Volterra model 
in describing the predator’s dynamics. f, Covariance structure holds irrespective 
of the unassumed, that is emphasizing the universality of the covariance criteria 
(Methods). This means that the criteria hold true even if the model does not 
explicitly include all factors influencing the system. To illustrate this, simulations 
are used where the predator follows the Lotka–Volterra model, but the rest of 
the ecological community can exhibit arbitrarily complex dynamics. These 
simulations serve purely as an illustrative aid, as the core strength of the method 
lies in its mathematical rigour. Illustrations: mashikomo/stock.adobe.com.
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structures—their own unique quantitative ‘fingerprints’. To assess this 
discriminatory power systematically, we applied the covariance crite-
ria framework to simulations of all 40 predator functional response 
models reviewed by ref. 3. While many of these models produce quali-
tatively similar cyclic dynamics, our analysis revealed that each pos-
sesses a unique, distinguishable covariance structure (Supplementary 
Note 2). This demonstrates the potential of the covariance criteria 
to differentiate between competing models that might otherwise 
be indistinguishable based solely on visual inspection or standard 
goodness-of-fit metrics.

Leveraging this discriminatory power and the underlying general-
ity of the model allows the covariance criteria to interrogate models with 
greater precision than traditional approaches, overcoming common 
ambiguities in validation (Fig. 1e). First, the criteria directly test the 
dynamics of individual species, eliminating the need to know whether 
the model is correct for the entire system (case 1 versus case 2 in Fig. 1e). 
For instance, we can validate whether the predator dynamics follow the 
Lotka–Volterra model regardless of whether the prey dynamics also fol-
low the Lotka–Volterra model (Lotka–Volterra in Fig. 2f) or follow a more 
complex model (complicated prey dynamics in Fig. 2f). Second, the 
covariance test is invariant to unknown species that indirectly interact 
with the species under examination (case 3 in Fig. 1e). For instance, the 
test for the predator remains valid even when we add many other species 
that only interact with the prey (species-rich Lotka–Volterra in Fig. 2f), 
including interactions that ultimately drive chaotic dynamics (chaotic 
food web in Fig. 2f). Lastly, the covariance criteria can sometimes tol-
erate unknown abiotic factors (case 4 in Fig. 1e), particularly when the 
environment acts as an exogenous driver statistically independent of 
population abundance (with exogenous environment in Fig. 2f).

Addressing noise and limited data
Ecological time series data are often noisy and limited in length, which 
can make it difficult to draw reliable inferences from point estimates 
of covariance values alone. To estimate uncertainty around the covari-
ance measures, we can take a bootstrapping approach. Specifically, we 
repeatedly draw random samples from the original time series data 
with replacement and recalculate the gain and loss rate covariances 
for each resampled dataset. This generates distributions of covariance 
that capture the inherent variability in the data.

We then compare the distribution of gain rate covariances and 
the distribution of loss rate covariances. To assess the statistical sig-
nificance of any observed difference between these distributions, we 
examine the distribution of their pairwise differences. A significant 
overlap between the pairwise difference distribution and zero suggests 
that the model-predicted equality between the covariances is statisti-
cally supported. In contrast, a pairwise difference distribution that is 
clearly shifted away from zero provides strong evidence that the model 
violates the covariance criteria. To quantify this difference, we calculate 
Cohen’s d, a standard measure of effect size between the pairwise differ-
ence distribution and zero. A z-score below a threshold (typically 1.96 
for 95% confidence) indicates that the distributions are statistically 
indistinguishable—the covariances are not different from each other 
and the model passes the test. This threshold can be adjusted to control 
the balance between false positives and false negatives as needed. For 
the planktonic predator–prey example in Fig. 2, the z-score is 0.04, 
indicating that the two covariances are probably the same. We have 
developed the R package ecoModelOracle to streamline this statistical 
analysis, making it easier for users to implement the approach.

It is important to understand the nature of potential errors that 
can arise from this use of the covariance criteria to validate or invalidate 
ecological models. Simulations show that the covariance test is more 
prone to type I errors (validating an incorrect model) than to type II 
errors (failing to validate a correct model) (Supplementary Note 3). This 
is because our test sets a high threshold for validation and therefore 
minimizes the risk. As a consequence, when a model fails our test, we 

can be highly confident in invalidating it. However, when passing the 
test, the model should be interpreted as a strong candidate for further 
investigation rather than being the true model.

As a direct application of this statistical approach to the covariance 
criteria, we revisit the long-standing debate on whether the hare–lynx 
dynamics in the Canadian boreal zone adhere to the Lotka–Volterra 
model (Fig. 1e). We do so by applying the covariance criteria to the full 
dataset from the system. For hares, the calculated z-score between the 
distributions of gain and loss covariances is 4.9, a value that strongly 
suggests unequal covariances and the inadequancy of the Lotka–Volt-
erra model in capturing hare dynamics. In contrast, the z-score for the 
gain and loss covariance distributions for lynx is 1.7. This implies that 
one cannot statistically reject the equality of covariances, supporting 
the Lotka–Volterra model as a potentially useful approximation for 
lynx dynamics. These findings mirror case 2 in Fig. 1, aligning with the 
hypothesis that the Lotka–Volterra model might be valid for lynx but 
not for hares in this predator–prey system9.

Caveats when applying covariance criteria
While the covariance criteria offer a powerful and broadly applicable 
tool for rigorously testing ecological models, this is not a panacea. As 
with any computational method, it is crucial to recognize its limitations 
and apply it thoughtfully to ensure reliable interpretation.

One key practical consideration arises in cases where not all model 
parameters cancel algebraically within the covariance equality (equa-
tion (3)). As noted earlier, the application of the criteria is most straight-
forward when parameters do cancel (as in equation (5)), enabling a 
non-parametric test of the structure of the model using only abundance 
data. However, more complex models often yield semiparametric tests 
where some parameters remain within the covariance equality. To deal 
with this, one can always estimate these values using standard fitting 
procedures. However, doing so can reintroduce the parameter estima-
tion uncertainties that this method partly aims to avoid. Instead, we 
recommend evaluating the covariance equality (equation (3)) across 
a range of biologically realistic values for the necessary parameters. If 
the equality consistently fails across this plausible parameter space, it 
provides strong evidence that the fundamental structure of the model 
is inadequate, irrespective of the precise parameter values. Methods 
and Supplementary Note 4 illustrate this semiparametric approach by 
testing two classes of population dynamic models against the global 
population dynamics database19.

Beyond parameter considerations, the interpretation of the 
covariance criteria hinges on a crucial assumption regarding the pri-
mary driver of population fluctuations. The method is designed to test 
the structure of deterministic gain and loss processes that themselves 
generate sustained, non-equilibrium dynamics (such as limit cycles or 
chaos). In these scenarios, the observed variability is a direct reflec-
tion of the interplay between the modelled gain and loss rates, making 
the test powerful and informative. Conversely, the applicability of 
the method diminishes if the dynamics of the system are governed 
by a stable equilibrium, where the observed fluctuations arise from 
stochastic noise perturbing the system away from its equilibrium. 
While these fluctuations contain information about the stabilizing 
feedbacks of the system, they do not reflect the specific gain–loss 
structure that our test interrogates. Applying the criterion in such a 
noise-dominated scenario, where the deterministic signal is absent, 
may become uninformative or potentially misleading. Ultimately, the 
key distinction lies in the origin of the fluctuations: our method is built 
to analyse deterministic dynamics, not stochastic noise. Rigorous 
mathematical conditions supporting this point are detailed in Meth-
ods, with corresponding simulation analyses in Supplementary Note 5.

These complicating factors, along with other important details 
concerning the applicability of the covariance criteria, such as the 
handling of non-stationary data (trends) and the implications of data 
transformations, are discussed further in Supplementary Note 6.
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Three case studies
In this section, we apply the covariance criteria to tackle three 
long-standing problems in ecology. We begin by investigating the 
fundamental nature of predation, using the criteria to rigorously test 
different functional forms describing the predator–prey interaction. 
We then study the integration of rapid evolutionary processes into 
ecological models, leveraging the criteria to potentially pinpoint where 
evolutionary forces significantly shape species dynamics. Finally, we 
search for the often-hidden influence of higher-order interactions 
within ecosystems, harnessing the criteria to uncover complex rela-
tionships that extend beyond simple pairwise effects.

Reverse engineering the nature of predation
Predation is a key force structuring ecological communities20. Yet, 
modelling this interaction remains a challenge. A central debate per-
sists over whether predation is best described by Lotka–Volterra (in 
which predation is a function of the product of predator and prey abun-
dances), or instead, additionally dependent on the ratio of predator and 
prey individuals in the system. This debate has persisted for decades21–25, 
partly because traditional methods often struggle to definitively rule 
out alternative explanations26. Here we demonstrate how the covari-
ance criteria can help resolve this long-standing question.

We examine three possible prey dynamics: Lotka–Volterra dynam-
ics with and without self-regulation and ratio-dependent dynamics27,28,

dy
dt

=
⎧⎪
⎨⎪
⎩

αy − βyx, (Lotka-Volterrawithout self-regulation)

αy − β1y2 − β2 yx, (Lotka-Volterrawith self-regulation)

αy − β1y2 − β2
yx

x+ky
(Ratio-dependent)

(6)

Similarly, we consider three possible predator dynamics:

dx
dt

=
⎧⎪
⎨⎪
⎩

δyx − γx, (Lotka-Volterrawith self-regulation)

δyx − γ1x2 − γ2x, (Lotka-Volterrawith self-regulation)

δ yx

x+ky
− γx (Ratio-dependent)

(7)

To rigorously test these models, we analyse a unique long-term 
dataset with replicated predator–prey dynamics under various condi-
tions17. The dataset tracks the relationship between the aquatic inver-
tebrate consumer Brachionus calyciflorus and its green algae prey 
Monoraphidium minutum. We find that the prey dynamics align most 
closely with Lotka–Volterra dynamics with self-regulation (Fig. 3a–c), 
while the predator dynamics align most closely Lotka–Volterra dynam-
ics without self-regulation (Fig. 3d–f). For both species, the model 
with ratio-dependent interactions deviates most from the equality 
constraint posed by the covariance criteria (see Supplementary Note 
7 for additional statistical analysis). Our findings therefore provide 
compelling evidence that predation in this system is prey-dependent 
as posed in the Lotka–Volterra model and not a function of the ratio of 
predators and prey in this system.

To evaluate whether traditional approaches are capable of achiev-
ing similar results as the covariance criteria, we applied three distinct 
methodologies—derivative regression, Bayesian statistics and symbolic 
regression with deep learning—to the same dataset (Methods). They all 
fail to capture the inherent dynamics (Supplementary Note 8).

In addition, our analysis sheds light on a long-standing question 
about where self-regulation emerges in predator–prey systems. We 
find that self-regulation may play a role in the dynamics of the prey 
species, but not in the predator species. This observation is consistent 
with the broader ecological hypothesis that top predators lack strong 
self-regulating mechanisms29–32. One consequence of self-regulation 
in the prey species, as found here, is an implied role for stochasticity in 

shaping the persistent cycles characteristic of predator–prey systems. 
Without stochasticity, self-regulation within the prey population drives 
the system towards a stable equilibrium in the Lotka–Volterra model33. 
However, when this self-regulation interacts with environmental sto-
chasticity, the equilibrium is disrupted and transient dynamics can 
cause indefinite fluctuations34,35.

Dissecting ecological and evolutionary processes
Evolutionary and ecological processes can operate on similar 
timescales36,37. Prey–predator dynamics, in particular, have emerged 
as a prime example of such rapid evolution38,39. However, a major mod-
elling challenge lies in determining where in the ecological system to 
incorporate evolution: should we focus on prey evolution40,41, preda-
tor evolution42 or their simultaneous co-evolution43,44. Unfortunately, 
several models, each incorporating different assumptions about which 
species evolve, can produce similar observable patterns, including for 
example the synchrony of predator and prey population cycles45. This 
makes it difficult to pinpoint the specific evolutionary processes oper-
ating within the interaction based solely on qualitative observations of 
the data. Fortunately, the covariance criteria, with its ability to test how 
well a model captures the key dynamics of each species, offers a prom-
ising avenue to pinpoint the specific evolutionary processes at play.

To examine how evolution shapes the dynamics of predator and 
prey, we must first establish a baseline: how do prey–predator dynam-
ics appear without rapid evolution? Building on our earlier finding 
(Fig. 3), we propose the Lotka–Volterra model with self-regulation for 
the prey and without self-regulation for the predator as a candidate. To 
test the validity of this model, we analysed 18 time series across diverse 
ecosystems where rapid evolution is not thought to be operating in a 
major way17,46–52, compiled and processed by ref. 53 except for ref. 17 
(Supplementary Fig. 20). Applying the covariance criteria to these data-
sets, we find that the proposed form of the Lotka–Volterra model gener-
ally describes both prey and predator dynamics well in the absence of 
rapid evolution (Fig. 4a,b, statistical analysis in Supplementary Fig. 21).

With a reliable ‘no evolution’ baseline model in hand, we can now 
ask: how does rapid evolution reshape the covariance structure of the 
system—in the prey, the predator or both? To address this question, we 
analysed 13 prey–predator time series where rapid evolution is empiri-
cally observed38,46,52,54–60. These datasets, compiled and processed by ref. 
53, encompass a diverse range of ecosystems, providing an ideal test-
bed. The covariance criteria reveal a striking pattern: predator species 
exhibit significant deviations from the baseline Lotka–Volterra model 
(with no rapid evolution), suggesting that the Lotka–Volterra model 
no longer holds (Fig. 4d and Supplementary Fig. 21 in Supplementary 
Note 9). In contrast, prey species continue to adhere to the predictions 
of the Lotka–Volterra model (Fig. 4c and Supplementary Fig. 21 in Sup-
plementary Note 9).

These findings suggest that incorporating rapid evolution might 
require modifications to the predator component of the Lotka–Volt-
erra model, but probably not the prey component. A caveat, though, 
is that we cannot pinpoint specific evolutionary mechanisms as we 
have exclusively focused on phenomenological models. It is possible 
that evolution occurs in the predator’s capture-related traits and/or 
the prey’s defensive traits, but phenomenologically, only the predator 
seems to respond to these evolutionary changes in one or both species. 
Another caveat is that prey species may have different intrinsic gain 
rates with or without rapid evolution. Owing to the non-parametric 
nature of the covariance criteria test, we cannot detect these potential 
differences because they share the same model structure. Despite 
these limitations, our findings provide guidance for selecting current 
eco-evolutionary models and catalysing the development of new ones.

Detecting signals of higher-order interactions
Higher-order interactions, where a third species modifies interactions 
between a pair, have long fascinated ecologists61,62. Yet, detecting their 
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existence remains challenging. Experimental manipulations, while 
ideal, are often logistically difficult63,64. A common alternative is to 
infer higher-order interactions through model fitting65–67. However, 
since higher-order interactions introduce more parameters, models 
can overfit the data, giving the illusion of higher-order interactions 
where none exists68,69. While regularization methods and information 
criteria can mitigate this issue70,71, biases may still persist.

In contrast, the covariance criteria offer a compelling alternative 
for detecting potential higher-order interactions, as they are inherently 
less susceptible to overfitting. Specifically, higher-order interactions, 
when encoded in a model, change the predicted covariance structure. 
If that model was applied to a dataset with no true higher-order interac-
tions, a mismatch between the predictions of the model and the 
observed data would emerge. To demonstrate this, we analyse a 
high-quality, long-term dataset of a rocky intertidal community in Goat 
Island Bay, New Zealand72. This dataset tracks the monthly percentage 
cover of barnacles, mussels and algae for over 20 years. Others72 pro-
posed a model without higher-order interactions for mussel 
dynamics:

dM
dt

= r ( A + B ) M − z F (t) M

Mussel

BarnacleCrustose algae Seasonality e�ect = 1 + α (Tmax − Tmean) cos( 2π (t−32)
365 )

where M is the cover of mussels, B is the cover of barnacles, 

A is the cover of crustose algae, r is the rate at which area covered by 
those two species is colonized by mussels, z is the constant death rate 
of mussels and F(t) represents the effects of seasonality, which is a 
complex function of abiotic factors. The model is formulated to 

indicate that mussels require cover by barnacles and/or algae to colo-
nize the marine intertidal.

Despite the complexity of this model, it has a simple covariance  
structure

Cov(r (A + B)M, M)
�r (A + B)M� �M� �z F (t) M� �M�

=
Cov(z F (t) M, M)

⇒ Cov ((A + B)M,M)
⟨(A + B)M⟩ ⟨M⟩ = Cov (M,M)

⟨M⟩ ⟨M⟩ (10)

We can cancel the mussel colonization (r) and death rate (z) because 
they are constant and can cancel the effects of seasonality F(t) because 
F(t) is independent of the fluctuations of mussels M (P = 0.72 with non-
linear correlation test73).

Additionally, we considered two further models. One model 
assumes that mussel growth depends only on a higher-order interac-
tion—the interactive effect of algae and barnacles on mussel  
colonization:

dM
dt =  r ABM − zF (t)M,

Higher order only

and the other model combines the pairwise and higher-order  
interactions:

z = 0.51 z = 2.77 z = 6.53

z = 0.93 z = 0.63 z = 2.24
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Fig. 3 | Reverse engineering the nature of predation. We apply the covariance 
criteria to study the functional form of the predation dynamics. We analyse the 
dataset17 with ten replicates of an experiment studying the aquatic invertebrate 
B. calyciflorus (predator) and the green algae M. minutum (prey) under varying 
conditions. Rows represent either prey (blue) or predator (orange) dynamics, 
while columns compare three models: Lotka–Volterra with self-regulation (centre), 
Lotka–Volterra without self-regulation (left) and a ratio-dependent model (right). 
Each panel compares normalized covariances (that is, covariance divided by 
the mean; equation (3)) between gain/loss rates and abundance (x and y axis, 

respectively) and the diagonal line denotes where the two covariances are equal. 
Data are presented as mean ± 2 s.d. for each replicate. The value in the upper-left 
corner of each panel displays the average z-score of the replicates within that panel. 
We find that the Lotka–Volterra model with self-regulation (centre) best captures 
prey dynamics, while the Lotka–Volterra model without self-regulation (left) best 
describes predator dynamics (Supplementary Figs. 15 and 16 provide statistical 
details). These findings suggest that a prey-dependent functional form, as used in 
the Lotka–Volterra model, is more appropriate to describe predation in this system 
compared with a ratio-dependent model.

(8)

(9)

(11)
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We then test the covariance structure from all three models above 
(equations (8), (11) and (12)) against the empirical data (Fig. 5). We find 
that the higher-order interaction-only model (equation (11)) fails the 
test entirely (z = 6.17, gain rate covariance with density is quite differ-
ent from the loss rate covariance). In contrast, the pairwise only model 
(equation (8)) shows similar covariances for the gain and loss rates 
(z = 1.75). The pairwise + higher-order interaction model (equation (12)) 
almost perfectly explains the data (z = 0.09), suggesting the presence 
of higher-order interactions within this system (Supplementary Note 
10 provides further statistical analysis). Such higher-order interactions 
could involve the barnacles and algae covered areas synergistically 
facilitating mussel colonization.

Discussion
We introduce the covariance criteria as a powerful, assumption-light 
framework for validating ecological models against time series data. 
The key insight is that every dynamical model imposes unique con-
straints on the permissible covariance structures relating population 
abundances, gain rates and loss rates. If the empirical data satisfy 
these constraints, we can be confident the model provides a useful 
approximation capturing core aspects of the dynamics of the system. 
Conversely, violations of the covariance criteria provide quantitative 
evidence that the model is fundamentally inadequate, at least for the 
particular species and conditions examined.

Theoretically, the covariance criteria exhibit remarkable general-
ity, applying across ecological dynamics ranging from simple equilibria 
to complex non-equilibrium systems with non-Markovian delays and 
external stochastic forcing. Computationally, the criteria are efficient 
to evaluate and often operate non-parametrically (or semiparametri-
cally), eliminating the need to specify all model parameters from data. 
Perhaps most crucially from an empirical standpoint, the covariance 
criteria can be readily applied to the limited and noisy time series data 
common in ecological studies. As demonstrated through our three 
case studies, this approach consistently supports ecological models 
aligning with prevailing ecological understanding, while decisively 
rejecting those failing to capture underlying dynamics. In an era of rap-
idly accumulating high-quality ecological data, this approach subjects 
theorists’ ideas to rigorous scrutiny and facilitates a better dialogue 
between ecological theory and empirical reality.

Theoretical ecologists have often been criticized for validating 
models with a low bar for consistency with data74–76. The low validation 
bar allows a multiplicity of models to appear acceptable, even when 
their predicted mechanisms are vastly different, leading to insufficient 
confidence in any particular model. However, this raises a question: if 
we set a more rigorous quantitative bar, would all ecological models 
fail? This concern may explain the limited attention the covariance 
criteria have received beyond its originators77–79. After all, as R. May 
wrote, “the models of biological communities tend rather to be of a 
very general, strategic kind”80. We initially expected most ecological 
models to struggle to meet the strict covariance criteria. Much to our 
surprise, however, we found that the classic Lotka–Volterra model 
withstood the test across a wide range of consumer–resource systems. 
This stands in direct contrast to the common perception, echoed in 
many introductory ecology texts26,39, that the Lotka–Volterra model 
is overly simplistic and misses crucial biological details. Our findings 
could help explain the recent success of the Lotka–Volterra model in 
predicting some ecological patterns81–83.

This surprising robustness of the Lotka–Volterra model under our 
test of the covariance criteria, especially given its perceived simplic-
ity, raises the question of why traditional validation methods have 
often failed to support it in the same systems. Understanding this 
discrepancy requires considering how different approaches handle the 
complexities introduced by noise in real-world ecological data. While 
system identification theory confirms that Lotka–Volterra models 
are uniquely identifiable under idealized, noise-free conditions84,85, 
ecological systems are rarely noise-free. Stochastic perturbations 
often introduce more than simple measurement error, potentially 
causing subtle but significant effects such as transient phase shifts in 
population cycles. Traditional validation methods, which often rely 
heavily on capturing the precise timing and amplitude of oscillations 
or assume simpler noise structures, can be highly sensitive to these 
disruptions. Consequently, they might incorrectly reject an underlying 
Lotka–Volterra structure due to noise-induced deviations from deter-
ministic expectations. In contrast, the covariance criteria approach 
proves more resilient because it focuses on arguably the simplest 
statistics—specifically means and covariances—averaged over time. 
These properties are inherently less sensitive to the exact phasing or 
amplitude of individual cycles, allowing our method to capture the 
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Fig. 4 | Dissecting ecological and evolutionary processes. We apply the 
covariance criteria to study how rapid evolution affects population dynamics 
in predator–prey systems. Inspired by previous analyses, we evaluate the 
Lotka–Volterra model with self-regulating prey. Rows represent either prey 
(blue) or predator (orange) dynamics. Columns differentiate between datasets 
with (right panels; 13 datasets) or without (left panels; 18 datasets) evidence 
of rapid evolution. Each panel compares normalized covariances (that is, 
covariance divided by the mean; equation (3)) between gain/loss rates and 
abundance (x and y axis, respectively) and the diagonal line denotes where the 
two covariances are equal. Each line represents the results of the covariance 
criteria test applied to a specific dataset, using a different time window within 
that dataset. The transparency of the line indicates the size of the time window 
used: less transparent lines signify longer length of the time series segments 
starting at the origin of the time series, while a dot represents the analysis 
using the full time range of the dataset. We find that, without rapid evolution 
(left panels), the Lotka–Volterra model effectively describes both prey and 
predator dynamics across ecosystems. In contrast, with rapid evolution  
(right panels), the Lotka–Volterra model remains suitable for prey dynamics 
but not for predator dynamics. Supplementary Fig. 21 gives statistical details. 
These results guide how to incorporate rapid evolution in modelling prey–
predator dynamics.

dM
dt = r (A + B + AB )M − zF (t)M

Pairwise + Higher-order

(12)

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-025-02864-8

fundamental signature of the underlying ecological dynamics even 
amid the complexities of realistic noise and perturbations.

The covariance criteria represent a fundamentally different 
approach to model validation than machine learning methods such 
as symbolic regression86–88. Those machine learning techniques aim 
to directly distil mathematical models from patterns in empirical 
data, with minimal a priori knowledge of the system. In contrast, the 
covariance criteria approach retains theory-based model building at its 
core, as it begins with a theorist-proposed dynamical model inspired by 
natural history. Importantly, covariance criteria and machine learning 
approaches can work together. For example, they could be combined 
into a synergistic modelling pipeline where machine learning suggests 
new model structures, theorists use their expertise to explain the 
mechanisms and the covariance criteria rigorously test the resulting 
models against new data.

The covariance criteria could be useful for evaluating more than 
just population dynamics over time, as we focused on here. For exam-
ple, the criteria could be used to test models for how population abun-
dances vary over space, analogous to common ecological approaches 
of substituting space for time when aiming to understand long-term 
dynamics89,90. However, doing so would require making additional 
assumptions about how model parameters vary across locations. 
Future work could also adapt the criteria to model the dynamics of 
other types of empirical data, such as temporal changes in trait values 
or single nucleotide polymorphisms.

Despite their advantages, the covariance criteria have limitations. 
The approach is most effective when a species has only few direct 

interactions with other species. This is because the criteria partition 
the model into gain and loss components without dissecting their 
underlying process in any detail. When species interact directly with 
many rather than a few species, the gain and loss terms can become 
highly complex, parameters often can be cancelled out or system-
atically varied. While the covariance approach is still theoretically 
applicable, it requires careful consideration of parameter ranges and 
may not be feasible.

As ecology grapples with increasingly complex challenges, from 
climate change to biodiversity loss, the need for reliable models has 
never been greater. The covariance criteria approach offers a path 
towards greater confidence in our ecological understanding by 
rigorously testing models across a wide range of problems. By pro-
viding a more rigorous foundation for model validation, we hope 
this method can contribute to more accurate predictions of ecosys-
tem responses to environmental perturbations and more effective 
conservation strategies.

Methods
Partitioning into gain and loss rates
Our approach partitions any given dynamical equation in the most 
direct and mechanistically plausible way: the total gain rate (R+) is the 
sum of all positive terms and the total loss rate (R−) is the sum of the 
absolute values of all negative terms. As an example, we partition the 
logistic equation, dN

dt
= rN − αN2, into a gain rate R+ = rN (representing 

linear, density-independent gain) and a loss rate R− = αN2 (representing 
quadratic, density-dependent loss).

This partitioning is not arbitrary; it is constrained by fundamental 
requirements of the underlying theory. To illustrate, consider an alter-
native but ultimately invalid partitioning of the same logistic equation, 
where the gain rate is R′+ = (r + k)N − αN2  (representing nonlinear, 
density-dependent gain) and the loss rate is R’− = kN (representing 
linear, density-independent loss) for some positive constant k. This 
formulation is invalid within our framework for two primary reasons 
as described next.

First, gain or loss rates cannot be negative. The proposed gain 
term, R′+ = (r + k)N − αN2, is a parabola that becomes negative for large 
N, which is biologically and mathematically nonsensical. One might 
attempt to resolve this by defining the gain rate with a floor at zero, 
that is, R′′+ = max (0, (r + k)N − αN2). However, this fundamentally alters 
the dynamics of the system. The resulting model,

dN
dt

= max (0, (r + k)N − αN2) − kN (13)

is now a new and distinct model, not a repartitioning of the classic logis-
tic equation. This is immediately evident as its ecological equilibrium 
(where gain equals loss) is no longer at N* = r/α.

Second, the covariance criteria are derived assuming that the 
stochastic noise affecting the overall gain process is statistically inde-
pendent of the noise affecting the loss process. By defining the gain 
rate as containing a term ‘+kN’ and the loss rate as being equal to 
‘kN’, we imply that the a set of events responsible for the entire loss 
process is also a component of the gain process. This introduces a 
correlation between a component of the gain fluctuations and the 
entirety of the loss fluctuations, violating a key assumption of the 
theoretical framework.

More importantly, our method is designed to test a specific pro-
posed phenomenological model. The standard logistic model is the 
hypothesis that gain is linear and loss is quadratic. The alternative 
scenario—for instance, one with a saturating gain rate and a linear loss 
rate—is a different phenomenological model entirely, better captured 
by an equation such as dN

dt
= rN

1+cN
− dN. Each distinct partitioning of gain 

and loss terms constitutes a unique, testable hypothesis about the 
underlying structure of the system.
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Fig. 5 | Detecting signals of higher-order interactions. We apply the covariance 
criteria to study the presence of higher-order interactions (HOI) in a rocky 
intertidal community72. Specifically, whether crustose algae and barnacles 
interact with mussels exclusively through pairwise interactions or whether HOI 
is present. Three models are evaluated: pairwise interactions only (orange), 
higher-order interaction-only (purple) and a combination of both (blue). The 
x axis represents the covariance between abundance and gain rates, while the 
y axis represents the covariance between abundance and loss rates. Points are 
derived from 1,000 bootstrapping replicates. The higher-order only model 
(purple) shows a significant mismatch in covariance values, indicating its 
inadequacy. The pairwise interaction model (orange) aligns more closely but 
still deviates statistically from the observed loss covariance. In contrast, the 
model incorporating both pairwise and HOI (blue) accurately captures the loss 
covariance. Supplementary Fig. 23 shows further statistical analysis. These 
findings strongly suggest that both pairwise and HOI between crustose algae, 
barnacles and mussels play a significant role in influencing mussel dynamics 
within this community.
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Illustrative simulation-based validation
The covariance constraint (equation (3)) is a mathematically derived 
equality. To intuitively illustrate its robustness to unmodelled ecologi-
cal complexity, we performed simulations in Fig. 2f. In these simula-
tions, we fix the assumed structure for the predator’s abundance (x). 
We then vary the underlying dynamics of the prey (s) or introduce 
other complexities into the system, demonstrating that the equal-
ity between the normalized covariances holds regardless of these 
external dynamics.

The first dynamic simulated corresponds to the classic Lotka–Vol-
terra predator–prey model:

ds
dt

= αs − βsx (14)

dx
dt

= δsx − γx (15)

where α is the intrinsic growth rate of the prey, β is the predation rate 
(effect of predator on prey growth), δ is the conversion efficiency 
(effect of prey on predator growth) or rate constant for predator growth 
and γ is the predator mortality rate.

To add more complexity, the second simulated dynamic includes 
a type-2 functional response for the prey,

ds
dt

= α (s − s
K
) − βsx

1 + s
(16)

dx
dt

= δsx − γx (17)

where α is the intrinsic growth rate of the prey, K is the carrying capac-
ity of the environment for the prey, β is the maximum predation rate 
or attack rate.

To complicate the dynamical behaviour, the third dynamic is a 
chaotic food web model involving a resource (s1), an intermediate prey 
(s2) and the predator (x) feeding on the intermediate prey91:

ds
dt

= rs1 (1 −
s1
k
) − a1s1x

1 + b1s1
(18)

ds2
dt

= −c1s2 + c2s1s2 −
a2s2x

1 + b2s2
(19)

dx
dt

= δs2x − γx (20)

where a1 is the attack rate of the intermediate prey on the resource, b1 
is the handling time of the intermediate prey for the resource, c1 is the 
mortality rate of the intermediate prey, c2 is the conversion efficiency 
of the resource into intermediate prey, a2 is the attack rate of the preda-
tor on the intermediate prey, b2 is the handling time of the predator for 
the intermediate prey.

To introduce environmental variation, we considered a scenario 
with an exogenous, time-varying environment affecting the predator’s 
mortality rate:

ds
dt

= αs − βsx (21)

dx
dt

= δsx − cos(t)γx (22)

where γ is the baseline predator mortality rate and cos(t) models the 
seasonal variation of mortality.

Finally, to explore the effect of network complexity, we simulated 
a species-rich system where the prey dynamics (s) are coupled to a 
hundred other species (sj):

ds
dt

= rs +
100
∑
j=1

a js j (23)

dx
dt

= δsx − γx (24)

where aj is the interaction strength between the focal prey species (s) 
and the jth other species (sj).

As demonstrated visually in Fig. 2f, the calculated points for each 
model fall along the 1:1 line in Fig. 2f. This visually reinforces that the 
covariance criterion for the predator x (with assumed gain rate R+ and 
loss rate R−) holds across these diverse ecological scenarios, highlight-
ing its robustness to many forms of unmodelled dynamics external to 
the specific gain–loss structure being tested.

Application to semiparametric models
As discussed in the main section on ‘Caveats when applying covariance 
criteria’, the covariance criteria test may become semiparametric 
when model parameters do not cancel algebraically. In such cases, 
we advocate evaluating the covariance equality (equation (3)) across 
a plausible range of the non-cancellable parameter(s). To demon-
strate this concretely, we performed a meta-analysis using using the 
high-quality subset of a large dataset of single-species dynamics. The 
global population dynamics database is currently the largest compila-
tion of time series for single species19. As some data are either too short 
or too noisy for robust time series analysis, we restricted our analysis to 
the subset selected by ref. 92, which contains 172 time series spanning 
138 different taxa and 57 sampling locations.

We tested two common single-species growth models where 
parameters do not fully cancel. The first one is the theta logistic 
growth model93,94

dN
dt

= rN (1 − (N
K
)
θ

) (25)

where θ > 1 is the non-cancellable parameter. The second is the sublin-
ear growth model95,96:

dN
dt

= rNk − bN (26)

where the parameter 0 < k < 1 is non-cancellable.
For each model, we systematically varied the non-cancellable 

parameter (θ or k) across its biologically relevant range. We found 
that these models consistently failed the covariance test across the 
parameter ranges for almost all datasets, providing strong evidence for 
their structural inadequacy in describing these populations. Detailed 
results and specific parameter ranges explored are presented in Sup-
plementary Note 4.

Nature of fluctuations in covariance criteria
The covariance criteria assume that fluctuations are primarily driven 
by the deterministic gain (R+) and loss (R−) processes. To examine how 
additive noise might affect this, we formalize a general scenario where 
the rates include noise: R′+ = R+ + ϵ+ and R′− = R− + ϵ−, where the terms 
ϵ+ and ϵ− are stochastic noise impacting the gain and loss processes. 
We assume these are independent noise processes, each with  
zero mean. Crucially, this general formulation allows the noise affect-
ing gain (ϵ+) to differ from that affecting loss (ϵ−) and permits both  
to be density-dependent (functions of abundance x) or density- 
independent.
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The ratio of covariances in the presence of noise then 
becomes:

Linearity of covariance and mean

Mean of noise is zero

Cov(R+ +ε+ ,x) Cov(R– +ε– ,x)

Cov(R Cov(+ ε+ ,x)+ ,x ) Cov(R Cov(+ ε– ,x)– ,x )

Cov(R Cov(+ ε+ ,x)+ ,x ) Cov(R Cov(+ ε– ,x)– ,x )

〈R+ +ε+〉〈x〉 〈R– +ε–〉〈x〉/( (
( )
(

(
()

)
)

) )
= /

= /

〈R+ + 〈ε+〉〉 〈R– + 〈ε–〉〉

〈R+〉 〈R–〉

Next we discuss when the new constraint (equation (27)) 
reduces to the original constraint (equation (3)):

Density-independent noise. If the noise ϵ is density-independent, 
then Cov(R+,x) = Cov(R−,x) = 0 because the noise is uncorrelated with 
the population size x. In this case, the covariance ratio simplifies back 
to the original noise-free condition (equation (3)) and the covariance 
criterion remains valid.

Density-dependent noise. When the noise ϵ is density-dependent, 
Cov(R+,x) and Cov(R−,x) are not zero and can significantly affect the 
covariance ratio. The impact depends on the relative magnitude of 
these covariance terms.

•	 When gain/loss processes dominate noise, meaning that 
Cov(R+,x) ≫ Cov(ϵ+,x) and Cov(R−,x) ≫ Cov(ϵ−,x), then the additional 
covariance terms due to noise are negligible and the covariance 
criterion still holds approximately (because Cov(R+,x) + Cov(ϵ+,x) ≈ 
Cov(R+,x)).

•	 In contrast, if the density-dependent noise contributes 
significantly to the fluctuations, the original covariance 
criterion no longer applies. In this case, the noise must be 
explicitly accounted for in the analysis. However, the form of 
density-dependent noise is often unknown or difficult to char-
acterize in ecology. Without specific knowledge of how noise 
depends on population size, it is challenging to adjust the covar-
iance criterion to account for it. This limitation makes it difficult 
to apply the criterion accurately when density-dependent noise 
plays a significant role.

All the arguments above are mathematically rigorous. To see how 
these principles apply in practice, we performed a detailed simulation 
study (Supplementary Note 5). The results confirm that the valid-
ity of our method depends on the balance between the determin-
istic ‘signal’ and the stochastic ‘noise’. Specifically, our simulations 
show that the covariance criteria are extremely robust to additive 
(density-independent) noise. For density-dependent noise (both 
multiplicative and demographic), the test performs reliably at low 
to moderate intensities. Its accuracy only diminishes when the noise 
becomes strong enough to dominate the dynamics of the system and 
obscure the deterministic signal.

Implementation of comparative methods
To benchmark the covariance criteria against standard model valida-
tion techniques, particularly for the predation functional response 
case study (Fig. 3), we applied three common approaches to this 
dataset17. The goal was to assess if these methods could distinguish 
between the competing functional response models as effectively as 
the covariance criteria.

Regression on inferred derivatives. This method involves linear 
regression on the inferred derivatives of the population abundances, 
leveraging the linear relationships derived from transforming the 
generalized Lotka–Volterra equations. Specifically, the Lotka–Volterra 
equations for species (xi) can be written as

d log xi
dt

= ri +∑
j
aijx j (28)

where ri is the intrinsic growth rate and aij are interaction strength 

between species xi and xj. This equation shows the linear relationship 
between the rate of change of the logarithm of abundances and the 
abundances of the interacting species. This relationship makes a linear 
regression possible. We then easily set up linear regression models for 
each species. The key challenge is inferring the derivatives d

log
xidt  

numerically from noisy data. A naive finite difference approximation

d log xi
dt

≈ log (xi(tk+1)) − log (xi(tk))
tk+1 − tk

(29)

amplifies noise, leading to unreliable estimates. To mitigate this, we 
used the R package gauseR, which provides optimized functions for 
derivative estimation using smoothing techniques.

Bayesian nonlinear ODEs modelling. While regression fitting 
approaches are useful, they might still be biased as they lack the direct 
modelling of ordinary differential equations (ODEs). Therefore, we 
also implemented a Bayesian framework. Instead of directly fitting the 
parameters, we used an iterative process: we start with an initial guess 
for the parameters, run a simulation of the Lotka–Volterra model and 
then update the parameters on the basis of the comparison between 
the simulation output and the observed data. This process is repeated 
until the model converges to a good fit. Specifically, we used Markov 
chain Monte Carlo methods to sample from the posterior distribution 
of the parameters, allowing us to quantify uncertainty in the parameter 
estimates. We also incorporated uncertainties in the initial abundance 
measurements, maximizing the use of available information. In our 
Bayesian model, we specified the Lotka–Volterra dynamics within the 
Stan language using the brms package in R, which facilitates fitting 
Bayesian models with complex hierarchical structures and custom 
likelihoods. We then used the ode_rk45 solver to numerically integrate 
the ODEs over time.

Symbolic regression with deep learning. Symbolic regression aims to 
infer the underlying equations governing a system directly from data, 
without assuming a specific model form. This approach has gained 
attention in ecology86,87. However, traditional symbolic regression meth-
ods are often sensitive to noise, which is prevalent in ecological time 
series. To address this, we used a state-of-the-art method of symbolic 
regression via deep learning97. This method uses a transformer neural 
network architecture, similar to those used in large language models, 
to learn the mathematical relationships between variables. The trained 
neural network, titled odeformer, has a total parameter count of 86 mil-
lion and was trained on a dataset of 50 million samples of diverse ODEs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Empirical data of aquatic invertebrate and the green algae are 
available from www.nature.com/articles/s41586-019-1857-0. 
Empirical dataset of consumer–resource dynamics is available 
from https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12291.

Code availability
The R package ecoModelOracle to run the analysis is available via 
GitHub at https://github.com/clsong/ecoModelOracle.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection N/A

Data analysis All analysis are performed in R 4.4.1. Foundational data import, cleaning, and manipulation are performed using the "tidyverse" suite (v2.0.0), 
with specific capabilities for reading Excel files provided by "readxl" (v1.4.3). To ensure project portability, file paths are managed with the 
"here" package (v1.0.1), and all date-time data is systematically handled by "lubridate" (v1.9.4). The graphical visualization process, centered 
on ggplot2, is significantly enhanced by a collection of specialized packages: "patchwork" (v1.3.0) is used to combine multiple plots into 
cohesive arrangements, "ggtext" (v0.1.2) enables rich text formatting within graphics, and advanced visual modifications are achieved through 
"ggh4x" (v0.2.8) for facet and scale customization and "ggblend" (v0.1.0) for sophisticated layer blending. The analytical core of the project 
relies on the "tidymodels" framework (v1.2.0) for statistical modeling and the "ecoModelOracle" package (v0.1.0; available on https://
github.com/clsong/ecoModelOracle) for covariance criteria analyses. Finally, computational performance is optimized by implementing 
parallel processing with "furrr" (v0.3.1) to accelerate demanding calculations.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Empirical data of aquatic invertebrate and the green algae is available from https://www.nature.com/articles/s41586-019-1857-0. Empirical dataset of consumer-
resource dynamics is available from https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12291. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Human participants, their data, or biological material are not involved in our research.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Human participants, their data, or biological material are not involved in our research.

Population characteristics Human participants, their data, or biological material are not involved in our research.

Recruitment Human participants, their data, or biological material are not involved in our research.

Ethics oversight Human participants, their data, or biological material are not involved in our research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Our study introduces and applies a novel method, termed the covariance criteria, for the rigorous validation of ecological models 
against time series data. This approach, rooted in queueing theory, establishes a test based on the covariance relationships between 
a species' abundance and its model-defined gain and loss rates. We demonstrate the method's utility by applying it to test competing 
models across three long-standing ecological challenges: the functional form of predator-prey interactions, the role of rapid 
evolution in population dynamics, and the detection of higher-order interactions.

Research sample To test our theoretical approach, we use published time series data on species abundances from various ecological systems. The 
datasets are drawn from several key sources cited in the literature, including a long-term, replicated dataset of an aquatic predator-
prey system, a compilation of consumer-resource time series from diverse ecosystems, a long-term dataset of a rocky intertidal 
community in New Zealand, and a curated subset of single-species time series from the Global Population Dynamics Database.

Sampling strategy The core of our analysis is the application of the covariance criteria. For a given ecological model and a species' time series, we 
partition the model's dynamics into terms representing the total gain rate and loss rate. We then calculate the normalized 
covariances of these inferred rates with the observed species abundance over the time series. The model is considered valid if the 
normalized covariance of the gain rate with abundance is equal to the normalized covariance of the loss rate with abundance. To 
assess statistical uncertainty and test this equality, we employ a bootstrapping approach, where we repeatedly resample the time 
series data with replacement to generate distributions for the two normalized covariance terms.

Data collection This study involves the analysis of pre-existing, published data. We did not perform new experiments or field observations. The 
specific data collection protocols for each dataset are detailed in the original publications from which the data were obtained.

Timing and spatial scale The timing and spatial scale of the data vary across the different studies we analyzed. For example, the rocky intertidal community 
data were collected monthly over a period of more than 20 years at a single location. The consumer-resource datasets are typically 
from laboratory microcosm experiments with frequent sampling over many generations. The Global Population Dynamics Database 
datasets represent a wide variety of sampling frequencies and durations from many distinct locations.
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Data exclusions Our analysis requires time series of sufficient length and quality to reliably estimate covariance. For the meta-analysis of single-
species dynamics, we explicitly used a curated subset of the Global Population Dynamics Database, which excludes time series that 
are too short or noisy for robust analysis. For other analyses, we relied on datasets previously established in the literature as being of 
high quality for studying population dynamics.

Reproducibility The analyses presented are reproducible. The primary data sources are publicly available and are referenced with citations and, 
where possible, URLs in the manuscript. All computational methods and statistical analyses were performed using our custom R 
package, ecoModelOracle, which is publicly available on GitHub.

Randomization This is a computational study based on observational and experimental data, so there was no randomization of subjects to 
experimental treatments. However, randomization is a key component of our statistical procedure. We use bootstrapping, which 
involves repeatedly drawing random samples (with replacement) from the original time series, to generate distributions of our test 
statistic and quantify uncertainty.

Blinding Not applicable because published data were used and we did not perform experiments or observations.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Not applicable because published data were used and we did not perform experiments or observations. 

Seed stocks Not applicable because published data were used and we did not perform experiments or observations. 

Authentication Not applicable because published data were used and we did not perform experiments or observations.

Plants
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