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The complexity of ecosystems poses a formidable challenge for validating
ecological models. The prevailing inability to falsify models has resulted
inan accumulation of models but not an accumulation of confidence.

Here we introduce an approach rooted in queueing theory, termed the
covariance criteria, that establishes arigorous test for model validity
based on covariance relationships between observable quantities.

These criteria set a high bar for models to pass by specifying necessary
conditions that must hold regardless of unobserved factors. We test

our approach using observed time series data on three long-standing
challengesin ecological theory: resolving competing models of predator-
prey functional responses, disentangling ecological and evolutionary
dynamicsin systems with rapid evolution and detecting the often-elusive
influence of higher-order species interactions. Across these diverse case
studies, the covariance criteria consistently rule out inadequate models,
while building confidence in those that provide strategically useful
approximations. The covariance criteria approach is mathematically
rigorous and computationally efficient, making it applicable to existing

data and models.

Population abundance is the ever-present variable in the equation of
life on Earth. To decipher the drivers behind the fluctuations of popula-
tion abundance, ecologists construct mathematical models—simpli-
fied representations that capture the key dynamics of an ecosystem
while making judicious sacrifices of the full complexity of Nature.
This synergy between data and modelling forms the foundation of
contemporary ecology'”. Yet, this endeavour faces a fundamental
challenge: how can we confidently adjudicate which models provide
useful approximations of Nature, and which are oversimplified cari-
catures? The starkreality is that even for predator-prey interactions,
there exist more than 40 distinct models of how predator feeding
rate depends on prey abundance (reviewed inref. 3). This plethora of
alternatives stems from the prevailing inability, using conventional
practices, to decisively validate some models and invalidate others
against empirical data.

To illustrate the limitations of current approaches, consider a
textbook example of the coupled population dynamics of snowshoe

hares and Canadian lynx in boreal forests* (Fig. 1a). The dynamics is
classically modelled using the Lotka-Volterra predator-prey model
(Fig. 1b). A common validation approach is to compare the qualita-
tive behaviours between data and model prediction (Fig. 1c). In this
example, the Lotka-Volterramodel predicts coupled cycles of predator
and prey abundances with a fixed amplitude and period length—the
hallmark of the ‘predation cycle’ in graphical predator-prey theory>®.
The qualitative resemblance of the data to these predicted cycles pro-
vides some confidencein the validity of the model. Another common
approachisfitting models to data and assessing goodness-of-fit or fore-
casting power (Fig.1d). For this example, the predator-prey dynamics
can be approximated with a given set of parameters in Lotka-Volt-
erradynamics, providing support for the proposed model. These two
approaches represent the mainstream for validating models against
time series data.

But what if the model and data diverge? Does that mean the
modelisinvalidated? Returningto the hare-lynx example, over longer
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Fig.1| Common approaches in ecological model validation and limitations.
a,b, A classic example of predator-prey dynamics: observed data, the
population fluctuations of snowshoe hares (blue) and Canada lynx (red)

(a) and the Lotka-Volterra model as a candidate to describe the underlying
processes (b). c,d, Two validation approaches: comparing qualitative
behaviours (for example, cycles in both dataand model) (c) and fitting

the model to the data to examine its explanatory or predictive power (d).

19‘15 19‘20

e, Challenges ininterpreting validation results. Pitfalls in falsification when
mismatched are: a mismatch between a model and data does not necessarily
prove the model s entirely incorrect (case 1), as the discrepancy could

stem from the model being partially incorrect (case 2), unobserved biotic
interactions (case 3) or abiotic influences (case 4). Current methods often
cannot decisively determine which of these cases is responsible for the
mismatch. lllustrations: mashikomo/stock.adobe.com.

timescales thanshowninFig.1, the observed population cycles diverge
from the classic Lotka-Volterra predictions: in fact, the data suggest
a‘reversed cycle’, implying the nonsensical result that hares eat lynx’.
However, interpreting such discrepancies is fraught with ambiguity.
One possibility is that these deviations in qualitative patterns invalidate
the core assumptions of the Lotka-Volterraframework, demanding an
alternative theoretical model for the entire predator-prey system (case
1in Fig. 1e)®. Alternatively, the model could accurately describe the
dynamics of one species (for example, lynx) while failing for the other
(for example, hares) due to missing factors specific to that species
(case2inFig.1e)’.Incontrast, itis also possible that the model correctly
describes the lynx-hare interaction, but fails to include all the other
variables driving the observed dynamics. These could be other uncon-
trolled biotic factors (case 3 in Fig. 1e), such as the hare-vegetation
interaction' or disease epidemics. Or it could be that there are other
uncontrolled abiotic factors (case 4 in Fig. 1e), such as environmental
fluctuations altering species parameters over time" . In sum, current
practices makeit challenging tojudge whether the modelis truly valid,
partially valid or simply wrong.

Thislong-standing challenge of model validation has plagued ecol-
ogy, leaving the true scope of even classic models such as the Lotka-
Volterra formulation unresolved. Here we address this fundamental
problem in ecological modelling by introducing a method originally
developed by biophysicists™. In essence, this method uncovers the
(mostly unique) inherent structure of temporal covariance between
model elements, a constraint that remains invariant regardless of
unknown ecological factors. By leveraging thisinherent constraint, we
can make strong statements about model validity. In the following sec-
tions, we firstintroduce the theoretical foundations of this approach.
We then demonstrate its discriminatory power by applying it to three
key problems in ecology: resolving debates on the functional form of
predator-prey interactions, disentangling the interplay of ecology
and rapid evolution, and detecting signals of higher-order species
interactions. Through these case studies, we illustrate how this rigor-
oustest of model validity can decisively invalidate flawed models, build

confidenceinthose that provide useful approximations and guide the
development of more robust ecological theory.

Covariance criteria for model (in)validation

Inthis section, weintroduce the theoretical framework for the covari-
ance criteria approach and demonstrate its application to ecological
models and data. We start by presenting the core concepts and math-
ematical foundations. We thenillustrate how to apply the framework
to a simple worked-out example with statistical methods. We then
discuss the advantages of this approach over current model validation
practices, as well as the caveats.

General theoretical framework

The fluctuations in population abundances that we observe in
Nature arise from a fundamental imbalance between two opposing
forces: the gain rate, which encompasses processes that increase
population size (for example, births, immigration and mutualism)
and the loss rate, which includes processes that decrease it (for
example, deaths, emigration and competition). In general, ecologi-
cal models describing the dynamics of population abundance can be
partitioned in the following form:

Population abundance Stochastic noise

i L

= Ry - R_ +
dt + 6/
Gain rate Loss rate

whereR, isthe gainrate, R_is the loss rate and {is the stochastic noise.
ThegainrateR, andlossrate R_can be complex functions of both biotic
(forexample, interactions with other species) and abiotic (forexample,
environmental) factors. This partitioning is not arbitrary; it follows
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directly from the mathematical formulation of a model, with R, com-
prising the sum of all positive terms and R_the sum of the absolute
values of all negative terms. The specific structure of amodel therefore
represents a distinct, testable hypothesis about the underlying gain
andloss processes (Methods). Any meaningful ecological model must
include this combination of gain and loss; otherwise, the model would
predict either indefinite growth or inevitable extinction.

We caniillustrate this partitioning using the predator dynamics
from the Lotka-Volterra model:where x denotes the predator and y
denotes the prey.

dx
2o Syx -
at yX VX, )

Gain rate Loss rate

When gain and loss rates are perfectly counterbalanced, the popu-
lation maintains a steady state or equilibrium. However, such perfect
balance is seldom encountered in the real world. Instead, we witness
periods where gains outweighs losses, leading to population growth,
interspersed with periods where losses dominate, causing population
decline. Thisinterplay between gains and losses generates the dynamic
fluctuationsinabundance that characterize most natural populations.

Whileitisintuitive that population abundance (x) fluctuates based
onthebalance of gains (R,) and losses (R_), mathematically formalizing
thislink presentsachallenge. The core difficulty stems from the fact that
the gain-lossimbalance (R, — R_) directly dictates the instantaneous rate
of changeinabundance (d—x), not the absolute abundance (x) atany given
time. In plainwords, the fundamental equation of population dynamics
(equation (1)) connects the processes driving change (gain and loss rates)
to the speed at which abundance changes, rather than directly to the
current amount of abundance itself. This makes it less straightforward
to quantify how the underlying gain and loss rates relate to the popula-
tion abundance as it varies over time. To overcome this and directly
assess the relationship between the gain/loss processes and the raw
populationabundance, we use covariance. Covariance provides a statisti-
calmeasure of how two variables—in this case, arate (suchasR,) and the
absolute abundance (x)—tend to fluctuate together over the observed
time series. For instance, if gain rates consistently tend to be higher when
population abundance is high, these two variables exhibit a positive
covariance. Crucially, for populations exhibiting bounded fluctuations,
theloss rate must also, on average, increase when abundance is high to
counterbalance theincreased gain. This necessary regulatory feedback
impliesthat theloss rate and population abundance should also covary
positively. By examining these covariance relationships, specifically how
thegainandlossrates covary withabundance, we canderive quantitative
criteriato test the structural assumptions of ecological models.

Formally, this constraint, while grounded in sophisticated math-
ematics, is captured in a surprisingly simple equality'*:where Cov
denotes covariance and <> denotes mean (Fig. 2a). Inwords, the equal-
ity (equation (3)) essentially states that the normalized covariance
between gainrate and abundanceis mirrored by the normalized covari-
ance between loss rate and abundance. Note that this normalized
covarianceis distinct from the correlation coefficient, whichis normal-
ized by standard deviations rather than means.

Covariance between loss and abundance

l |
Cov(R+, R) _ Cov(R-,R)

Ry 0 (R x>

Mean abun%ance
Mean gain rates

Mean loss rates
Mathematically, this equality is known as the second-order
moment equation derived from Little’s law in queuing theory™¢. It

Covariance between gain and abundance

3)

is a continuous-time formulation of the more general constraints™.
Specifically, our equation (3) can be derived from their equation (6)
by setting the two state variables to be the same (i =), which simpli-
fies the cross-correlation to an autocorrelation, and then taking the
continuous-time limit where the discrete time step vanishes. We adopt
acontinuous framework because population dynamicsin ecology are
commonly modelled with differential equations and empirical data
oftenrepresent continuous variables such as biomass or density (which
donothave adirect discrete interpretation).

Anillustrated worked-out example
This covariance structure serves as a simple test to validate or invali-
dateamodel.Ifthe modelaccurately reflects the observed ecological
dynamics, the equality (equation (3)) willhold and the model passes the
test. If the dataand constraint do not match, the equality will not hold
and the modelis falsified. We call this approach the covariance criteria.
We next illustrate how the covariance criteria works in practice
usingthe predator dynamics from the Lotka-Volterramodel (equation
(2)). Themodel defines the gainrate as proportional to the product of
prey and predator abundances (representing successful predation
leading toreproduction), while theloss rate is proportional to predator
abundancealone (representing mortality). Applying the general covari-
ance constraint (equation (3)) to thismodel, we get:Since the mean and
covariance operators are linear, we can simplify this further by cancel-
ling out the constant parameters 6 and y:

Cov(Byx,x) _ Cov(Yx,x)
Byx) (x) — (yx) (x)

cov(yx,x) _ cov(x,x)

(X 0

This simplification is powerful: it allows us to test the structural form
ofthe Lotka-Volterra model using only the observed time series data
for predator (x) and prey (y) abundances, without needing to estimate
the parameter values § and y. In such cases, the covariance criterion
provides a non-parametric test of the structure of the model.

We next test this model using a subset of data from a planktonic
predator-prey system” (Fig. 2b). The data include time series meas-
urements of both predator and prey abundance. Although we cannot
directly observe the gain and loss rates inthe data, the model allows us
toinfer them ateachtime point onthe basis of the observed abundance
data (Fig. 2¢). For instance, the gain rate is inferred as the product of
prey and predator abundance at each time point (recall that the param-
eter infront of this product cancels out in equation (5)).

The covariance criteria then examine how these inferred gain
and lossrates covary with the observed predator abundance (Fig. 2c).
The scatter plot of inferred gain rate against predator abundance
shows more scatter compared with the plot of inferred loss rate against
predatorabundance. Thisis expected because the predator’sgainrate
depends on both prey and predator abundance, while the loss rate
depends solely on predator abundance. However, it is important to
remember that the covariance criteria rely on the calculated covari-
ance values to provide the quantitative measure of the relationship
between the rates and predator abundance, not the visual spread of
thescatter plots. Inthis specific example, both normalized covariances
turn out to be 0.234. This suggests that the Lotka-Volterra model, in
this case, aligns with the covariance criterion and adequately explains
the observed predator dynamics.

While the Lotka-Volterraexampleillustrates the use of the covari-
ance criteriawhen the model contains simple gain and loss terms, the
approachisequally valid for models with more complex relationships
between gain or loss terms and species abundance. As an example,
Supplementary Note 1shows that the covariance criteria can be used

&)
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Fig. 2| Covariance criteria for model validation. a, The general principle of
covariance criteria (theoretical framework): ifamodel accurately captures the
underlying processes, the normalized covariance between the gain rate and
abundance should equal the normalized covariance between the loss rate and
abundance. b-e, The workflow of this approach to assess whether the Lotka-
Volterramodel can describe predator dynamics in a specific system: a subset
of the predator-prey observed data” (b); model for predator demonstrating
how the Lotka-Volterra model partitions predator dynamics into gain rate
(terms causing abundance increase) and loss rate (terms causing abundance
decrease) (c); integrating the modelled gain and loss rates with the observed
datatoinfer the empirical gain and loss rates across time (d); and examining
covariance structure by calculating the normalized covariances between the

inferred gain/loss rates and predator abundance (e). If these covariances are
equivalent, it strengthens confidence in the validity of the model. Conversely,
significant discrepancies indicate the inadequacy of the Lotka-Volterramodel
in describing the predator’s dynamics. f, Covariance structure holds irrespective
of the unassumed, that is emphasizing the universality of the covariance criteria
(Methods). This means that the criteria hold true even if the model does not
explicitly include all factors influencing the system. Toillustrate this, simulations
are used where the predator follows the Lotka-Volterra model, but the rest of
the ecological community can exhibit arbitrarily complex dynamics. These
simulations serve purely as anillustrative aid, as the core strength of the method
liesin its mathematical rigour. Illustrations: mashikomo/stock.adobe.com.

to evaluate the MacArthur-Rosenzweig predator-prey model with a
type Il functional response.

Discriminatory power of the covariance criteria

The covariance criteria work under remarkably broad conditions,
thanks to the generality of Little’s Law in queuing theory™¢. It applies
rigorously to stationary systems, where long-term statistical patterns
remain constant over time, regardless of whether they follow typical
Markoviandynamics (where the future depends only on the present, as
mostecological models do) or more complex non-Markovian dynam-
ics (where the history of the ecosystem influences its future, as in the
presence of time delays). Moreover, the criteria also hold for some

non-stationary dynamics, such as cyclo-stationary systems (where
statistical patterns repeat predictably, as with seasons).

One mightassume that such broad applicability renders the crite-
riaamere abstract principle with limited practical utility. Surprisingly,
as we show here, it imposes a stringent test for models to pass. When
the biophysicists who pioneered this method applied it to gene expres-
sion data, nearly all published models failed to meet the criteria'®.
This high bar means that when amodel does pass the test, we can have
strong confidence in its validity as a useful approximation of the true
dynamics of the system.

The stringency of the covariance criteria arises because differ-
ent ecological model structures typically yield distinct covariance
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structures—their own unique quantitative ‘fingerprints’. To assess this
discriminatory power systematically, we applied the covariance crite-
ria framework to simulations of all 40 predator functional response
models reviewed by ref. 3. While many of these models produce quali-
tatively similar cyclic dynamics, our analysis revealed that each pos-
sessesaunique, distinguishable covariance structure (Supplementary
Note 2). This demonstrates the potential of the covariance criteria
to differentiate between competing models that might otherwise
be indistinguishable based solely on visual inspection or standard
goodness-of-fit metrics.

Leveraging this discriminatory power and the underlying general-
ity of the model allows the covariance criteria tointerrogate models with
greater precision than traditional approaches, overcoming common
ambiguities in validation (Fig. 1e). First, the criteria directly test the
dynamics of individual species, eliminating the need to know whether
themodelis correct for the entire system (case1versus case 2 in Fig.1le).
Forinstance, we canvalidate whether the predator dynamics follow the
Lotka-Volterramodel regardless of whether the prey dynamics also fol-
low the Lotka-Volterramodel (Lotka-Volterrain Fig. 2f) or follow amore
complex model (complicated prey dynamics in Fig. 2f). Second, the
covariance testisinvariant to unknown species thatindirectly interact
with the species under examination (case 3inFig. 1e). For instance, the
test for the predator remains valid even when we add many other species
thatonlyinteract with the prey (species-rich Lotka-VolterrainFig. 2f),
includinginteractions that ultimately drive chaotic dynamics (chaotic
food web in Fig. 2f). Lastly, the covariance criteria can sometimes tol-
erate unknown abiotic factors (case 4 in Fig. 1e), particularly when the
environment acts as an exogenous driver statistically independent of
population abundance (with exogenous environment in Fig. 2f).

Addressing noise and limited data

Ecological time series data are often noisy and limited in length, which
can make it difficult to draw reliable inferences from point estimates
of covariance values alone. To estimate uncertainty around the covari-
ance measures, we can take abootstrapping approach. Specifically, we
repeatedly draw random samples from the original time series data
withreplacement and recalculate the gain and loss rate covariances
foreachresampled dataset. This generates distributions of covariance
that capture the inherent variability in the data.

We then compare the distribution of gain rate covariances and
the distribution of loss rate covariances. To assess the statistical sig-
nificance of any observed difference between these distributions, we
examine the distribution of their pairwise differences. A significant
overlap between the pairwise difference distribution and zero suggests
that the model-predicted equality between the covariances is statisti-
cally supported. In contrast, a pairwise difference distribution that is
clearly shifted away from zero provides strong evidence that the model
violates the covariance criteria. To quantify this difference, we calculate
Cohen’sd, astandard measure of effect size between the pairwise differ-
ence distribution and zero. A z-score below a threshold (typically 1.96
for 95% confidence) indicates that the distributions are statistically
indistinguishable—the covariances are not different from each other
and themodel passes the test. This threshold can be adjusted to control
the balance between false positives and false negatives as needed. For
the planktonic predator-prey example in Fig. 2, the z-score is 0.04,
indicating that the two covariances are probably the same. We have
developed the R package ecoModelOracle to streamline this statistical
analysis, making it easier for users toimplement the approach.

Itis important to understand the nature of potential errors that
canarise fromthis use of the covariance criteriato validate or invalidate
ecological models. Simulations show that the covariance test is more
prone to type l errors (validating an incorrect model) than to type Il
errors (failing to validate a correct model) (Supplementary Note 3). This
is because our test sets a high threshold for validation and therefore
minimizes the risk. As a consequence, when a model fails our test, we

can be highly confident in invalidating it. However, when passing the
test, themodel should be interpreted as astrong candidate for further
investigation rather than being the true model.

Asadirectapplication of this statistical approach to the covariance
criteria, werevisit the long-standing debate on whether the hare-lynx
dynamics in the Canadian boreal zone adhere to the Lotka-Volterra
model (Fig. 1e). We do so by applying the covariance criteria to the full
dataset fromthe system. For hares, the calculated z-score between the
distributions of gain and loss covariances is 4.9, a value that strongly
suggests unequal covariances and the inadequancy of the Lotka-Volt-
erramodelin capturing hare dynamics. In contrast, the z-score for the
gain and loss covariance distributions for lynx is 1.7. This implies that
one cannot statistically reject the equality of covariances, supporting
the Lotka-Volterra model as a potentially useful approximation for
lynx dynamics. These findings mirror case 2 in Fig. 1, aligning with the
hypothesis that the Lotka-Volterra model might be valid for lynx but
not for hares in this predator—prey system”’.

Caveats when applying covariance criteria

While the covariance criteria offer a powerful and broadly applicable
tool for rigorously testing ecological models, thisis not a panacea. As
withany computational method, it is crucial to recognize its limitations
and apply it thoughtfully to ensure reliable interpretation.

Onekey practical consideration arises in cases where not allmodel
parameters cancel algebraically within the covariance equality (equa-
tion (3)). Asnoted earlier, the application of the criteria is most straight-
forward when parameters do cancel (as in equation (5)), enabling a
non-parametric test of the structure of the model using only abundance
data. However, more complex models often yield semiparametric tests
where some parameters remain within the covariance equality. To deal
with this, one can always estimate these values using standard fitting
procedures. However, doing so canreintroduce the parameter estima-
tion uncertainties that this method partly aims to avoid. Instead, we
recommend evaluating the covariance equality (equation (3)) across
arange of biologically realistic values for the necessary parameters. If
the equality consistently fails across this plausible parameter space, it
provides strong evidence that the fundamental structure of the model
isinadequate, irrespective of the precise parameter values. Methods
and Supplementary Note 4 illustrate this semiparametricapproach by
testing two classes of population dynamic models against the global
population dynamics database®.

Beyond parameter considerations, the interpretation of the
covariance criteria hinges on a crucial assumption regarding the pri-
mary driver of population fluctuations. The method is designed to test
the structure of deterministic gain and loss processes that themselves
generate sustained, non-equilibrium dynamics (suchaslimit cycles or
chaos). In these scenarios, the observed variability is a direct reflec-
tionof theinterplay between the modelled gain and loss rates, making
the test powerful and informative. Conversely, the applicability of
the method diminishes if the dynamics of the system are governed
by a stable equilibrium, where the observed fluctuations arise from
stochastic noise perturbing the system away from its equilibrium.
While these fluctuations contain information about the stabilizing
feedbacks of the system, they do not reflect the specific gain-loss
structure that our test interrogates. Applying the criterioninsuch a
noise-dominated scenario, where the deterministic signal is absent,
may become uninformative or potentially misleading. Ultimately, the
key distinctionlies in the origin of the fluctuations: our method is built
to analyse deterministic dynamics, not stochastic noise. Rigorous
mathematical conditions supporting this point are detailed in Meth-
ods, with corresponding simulation analysesin Supplementary Note 5.

These complicating factors, along with other important details
concerning the applicability of the covariance criteria, such as the
handling of non-stationary data (trends) and the implications of data
transformations, are discussed further in Supplementary Note 6.
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Three case studies

In this section, we apply the covariance criteria to tackle three
long-standing problems in ecology. We begin by investigating the
fundamental nature of predation, using the criteria to rigorously test
different functional forms describing the predator-prey interaction.
We then study the integration of rapid evolutionary processes into
ecological models, leveraging the criteria to potentially pinpoint where
evolutionary forces significantly shape species dynamics. Finally, we
search for the often-hidden influence of higher-order interactions
within ecosystems, harnessing the criteria to uncover complex rela-
tionships that extend beyond simple pairwise effects.

Reverse engineering the nature of predation
Predation is a key force structuring ecological communities®. Yet,
modelling this interaction remains a challenge. A central debate per-
sists over whether predation is best described by Lotka-Volterra (in
which predationis afunction of the product of predator and prey abun-
dances), orinstead, additionally dependent ontheratio of predatorand
preyindividualsin the system. This debate has persisted for decades” %,
partly because traditional methods often struggle to definitively rule
out alternative explanations®. Here we demonstrate how the covari-
ance criteria can help resolve this long-standing question.

We examine three possible prey dynamics: Lotka-Volterradynam-

icswithand without self-regulation and ratio-dependent dynamics®*,

ay — Byx, (Lotka-Volterra without self-regulation)
j_y —lay—pBy?— B, yx, (Lotka-Volterra with self-regulation)
t
ay - p? - B, %’iy (Ratio-dependent)

(6)

Similarly, we consider three possible predator dynamics:

OYX — yX, (Lotka-Volterra with self-regulation)
(le_x — ] 8yx —yix* —y,x,  (Lotka-Volterra with self-regulation)
t
X i
o yx (Ratio-dependent)

@)

To rigorously test these models, we analyse a unique long-term
dataset with replicated predator-prey dynamics under various condi-
tions"”. The dataset tracks the relationship between the aquatic inver-
tebrate consumer Brachionus calyciflorus and its green algae prey
Monoraphidium minutum. We find that the prey dynamics align most
closely with Lotka-Volterra dynamics with self-regulation (Fig. 3a-c),
while the predator dynamics align most closely Lotka-Volterradynam-
ics without self-regulation (Fig. 3d-f). For both species, the model
with ratio-dependent interactions deviates most from the equality
constraint posed by the covariance criteria (see Supplementary Note
7 for additional statistical analysis). Our findings therefore provide
compelling evidence that predation in this system is prey-dependent
asposedinthe Lotka-Volterramodel and not afunction of the ratio of
predators and prey in this system.

To evaluate whether traditional approaches are capable of achiev-
ing similar results as the covariance criteria, we applied three distinct
methodologies—derivative regression, Bayesianstatistics and symbolic
regression with deep learning—to the same dataset (Methods). They all
fail to capture the inherent dynamics (Supplementary Note 8).

In addition, our analysis sheds light on a long-standing question
about where self-regulation emerges in predator-prey systems. We
find that self-regulation may play arole in the dynamics of the prey
species, butnotinthe predator species. This observationis consistent
with the broader ecological hypothesis that top predatorslack strong
self-regulating mechanisms® % One consequence of self-regulation
inthe prey species, asfound here, isanimplied role for stochasticity in

shaping the persistent cycles characteristic of predator—prey systems.
Without stochasticity, self-regulation withinthe prey population drives
the system towards a stable equilibrium in the Lotka-Volterramodel®.
However, when this self-regulation interacts with environmental sto-
chasticity, the equilibrium is disrupted and transient dynamics can
cause indefinite fluctuations®**.

Dissecting ecological and evolutionary processes

Evolutionary and ecological processes can operate on similar
timescales®”. Prey-predator dynamics, in particular, have emerged
asaprime example of suchrapid evolution®**’, However, amajor mod-
elling challenge lies in determining where in the ecological system to
incorporate evolution: should we focus on prey evolution***, preda-
tor evolution** or their simultaneous co-evolution****. Unfortunately,
several models, eachincorporating different assumptions about which
speciesevolve, can produce similar observable patterns, including for
example the synchrony of predator and prey population cycles®. This
makesit difficult to pinpoint the specific evolutionary processes oper-
atingwithin the interactionbased solely on qualitative observations of
the data. Fortunately, the covariance criteria, withits ability to testhow
wellamodel captures the key dynamics of each species, offers aprom-
ising avenue to pinpoint the specific evolutionary processes at play.

To examine how evolution shapes the dynamics of predator and
prey, we must first establish a baseline: how do prey-predator dynam-
ics appear without rapid evolution? Building on our earlier finding
(Fig.3), we propose the Lotka-Volterramodel with self-regulation for
the prey and without self-regulation for the predator as a candidate. To
test the validity of this model, we analysed 18 time series across diverse
ecosystems where rapid evolution is not thought to be operating in a
major way**>?, compiled and processed by ref. 53 except for ref. 17
(Supplementary Fig. 20). Applying the covariance criteria to these data-
sets, we find that the proposed form of the Lotka-Volterramodel gener-
ally describes both prey and predator dynamics wellin the absence of
rapid evolution (Fig. 4a,b, statistical analysis in Supplementary Fig. 21).

With a reliable ‘no evolution’ baseline model in hand, we can now
ask: how does rapid evolution reshape the covariance structure of the
system—inthe prey, the predator or both? To address this question, we
analysed 13 prey-predator time series where rapid evolution is empiri-
cally observed®*3*-%° These datasets, compiled and processed by ref.
53, encompass a diverse range of ecosystems, providing an ideal test-
bed. The covariance criteria reveal a striking pattern: predator species
exhibit significant deviations from the baseline Lotka-Volterra model
(with no rapid evolution), suggesting that the Lotka-Volterra model
no longer holds (Fig. 4d and Supplementary Fig. 21 in Supplementary
Note 9). In contrast, prey species continue to adhere to the predictions
of the Lotka-Volterra model (Fig. 4c and Supplementary Fig. 21in Sup-
plementary Note9).

These findings suggest that incorporating rapid evolution might
require modifications to the predator component of the Lotka-Volt-
erramodel, but probably not the prey component. A caveat, though,
is that we cannot pinpoint specific evolutionary mechanisms as we
have exclusively focused on phenomenological models. It is possible
that evolution occurs in the predator’s capture-related traits and/or
the prey’s defensive traits, but phenomenologically, only the predator
seemstorespondto these evolutionary changesinone or bothspecies.
Another caveat is that prey species may have different intrinsic gain
rates with or without rapid evolution. Owing to the non-parametric
nature of the covariance criteria test, we cannot detect these potential
differences because they share the same model structure. Despite
these limitations, our findings provide guidance for selecting current
eco-evolutionary models and catalysing the development of new ones.

Detecting signals of higher-order interactions
Higher-order interactions, where a third species modifies interactions
between a pair, have long fascinated ecologists®***. Yet, detecting their
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Fig. 3| Reverse engineering the nature of predation. We apply the covariance
criteria tostudy the functional form of the predation dynamics. We analyse the
dataset” with tenreplicates of an experiment studying the aquatic invertebrate

B. calyciflorus (predator) and the green algae M. minutum (prey) under varying
conditions. Rows represent either prey (blue) or predator (orange) dynamics,
while columns compare three models: Lotka-Volterra with self-regulation (centre),
Lotka-Volterrawithout self-regulation (left) and a ratio-dependent model (right).
Each panel compares normalized covariances (that is, covariance divided by

the mean; equation (3)) between gain/loss rates and abundance (xand y axis,

respectively) and the diagonal line denotes where the two covariances are equal.
Data are presented as mean + 2 s.d. for each replicate. The value in the upper-left
corner of each panel displays the average z-score of the replicates within that panel.
We find that the Lotka-Volterramodel with self-regulation (centre) best captures
prey dynamics, while the Lotka-Volterramodel without self-regulation (left) best
describes predator dynamics (Supplementary Figs. 15 and 16 provide statistical
details). These findings suggest that a prey-dependent functional form, as used in
the Lotka-Volterra model, is more appropriate to describe predationin this system
compared with aratio-dependent model.

existence remains challenging. Experimental manipulations, while
ideal, are often logistically difficult®***. Acommon alternative is to
infer higher-order interactions through model fitting®*". However,
since higher-order interactions introduce more parameters, models
can overfit the data, giving the illusion of higher-order interactions
where none exists®**’, While regularization methods and information
criteria can mitigate this issue’””, biases may still persist.
Incontrast, the covariance criteria offer acompelling alternative
for detecting potential higher-order interactions, as they are inherently
less susceptible to overfitting. Specifically, higher-order interactions,
whenencodedinamodel, change the predicted covariance structure.
Ifthatmodel was applied to adataset with no true higher-orderinterac-
tions, a mismatch between the predictions of the model and the
observed data would emerge. To demonstrate this, we analyse a
high-quality, long-term dataset of arocky intertidal community in Goat
Island Bay, New Zealand’. This dataset tracks the monthly percentage
cover of barnacles, mussels and algae for over 20 years. Others” pro-
posed a model without higher-order interactions for mussel
dynamics:where Mis the cover of mussels, Bis the cover of barnacles,

Mussel

¢

dMm
T TAE BYM - ZF() M (8)

Crustose algaeT 2 (t-32) )

I Barnacle [ Seasonality effect =1+ & (Trax = Trean) cos( 365

Ais the cover of crustose algae, ris the rate at which area covered by
those two species is colonized by mussels, zis the constant death rate
of mussels and F(¢) represents the effects of seasonality, whichis a
complex function of abiotic factors. The model is formulated to

indicate that mussels require cover by barnacles and/or algae to colo-
nize the marineintertidal.

Despite the complexity of this model, it has a simple covariance
structure

Cov(f(A + B)M, M)
/(A + B)M) {M)

Cov(Z EAt) M, M)
(Z EAtY M)y (M)

Cov((A+BM,M)  Cov(M,M)
(A+BMYM) — (M)(M)

(10)

We can cancel the mussel colonization (r) and death rate (z) because
they are constant and can cancel the effects of seasonality F(t) because
F(t)isindependent of the fluctuations of mussels M (P= 0.72 withnon-
linear correlation test™).

Additionally, we considered two further models. One model
assumes that mussel growth depends only on a higher-order interac-
tion—the interactive effect of algae and barnacles on mussel
colonization:

dm
dt
Higher order onlyI

and the other model combines the pairwise and higher-order
interactions:
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Fig. 4 | Dissecting ecological and evolutionary processes. We apply the
covariance criteria to study how rapid evolution affects population dynamics
in predator-prey systems. Inspired by previous analyses, we evaluate the
Lotka-Volterra model with self-regulating prey. Rows represent either prey
(blue) or predator (orange) dynamics. Columns differentiate between datasets
with (right panels; 13 datasets) or without (left panels; 18 datasets) evidence
of rapid evolution. Each panel compares normalized covariances (that s,
covariance divided by the mean; equation (3)) between gain/loss rates and
abundance (x and y axis, respectively) and the diagonal line denotes where the
two covariances are equal. Each line represents the results of the covariance
criteria test applied to a specific dataset, using a different time window within
that dataset. The transparency of the line indicates the size of the time window
used: less transparent lines signify longer length of the time series segments
starting at the origin of the time series, while a dot represents the analysis
using the full time range of the dataset. We find that, without rapid evolution
(left panels), the Lotka-Volterra model effectively describes both prey and
predator dynamics across ecosystems. In contrast, with rapid evolution

(right panels), the Lotka-Volterra model remains suitable for prey dynamics
but not for predator dynamics. Supplementary Fig. 21 gives statistical details.
These results guide how to incorporate rapid evolution in modelling prey-
predator dynamics.

d—M= r(A+ B+ AB)M - zF(t)M
dt (12)

Pairwise + Higher-order

Wethen test the covariance structure fromall three models above
(equations (8), (11) and (12)) against the empirical data (Fig. 5). We find
that the higher-order interaction-only model (equation (11)) fails the
test entirely (z= 6.17, gain rate covariance with density is quite differ-
ent from theloss rate covariance). In contrast, the pairwise only model
(equation (8)) shows similar covariances for the gain and loss rates
(z=1.75). The pairwise + higher-order interactionmodel (equation (12))
almost perfectly explains the data (z = 0.09), suggesting the presence
of higher-orderinteractions within this system (Supplementary Note
10 provides further statistical analysis). Such higher-order interactions
could involve the barnacles and algae covered areas synergistically
facilitating mussel colonization.

Discussion

We introduce the covariance criteria as a powerful, assumption-light
framework for validating ecological models against time series data.
The key insight is that every dynamical model imposes unique con-
straints on the permissible covariance structures relating population
abundances, gain rates and loss rates. If the empirical data satisfy
these constraints, we can be confident the model provides a useful
approximation capturing core aspects of the dynamics of the system.
Conversely, violations of the covariance criteria provide quantitative
evidence that the model is fundamentally inadequate, at least for the
particular species and conditions examined.

Theoretically, the covariance criteria exhibit remarkable general-
ity, applying across ecological dynamics ranging from simple equilibria
to complex non-equilibrium systems with non-Markovian delays and
external stochastic forcing. Computationally, the criteria are efficient
to evaluate and often operate non-parametrically (or semiparametri-
cally), eliminating the need to specify allmodel parameters from data.
Perhaps most crucially from an empirical standpoint, the covariance
criteriacanbereadily applied to the limited and noisy time series data
common in ecological studies. As demonstrated through our three
case studies, this approach consistently supports ecological models
aligning with prevailing ecological understanding, while decisively
rejecting those failing to capture underlying dynamics. Inan era of rap-
idly accumulating high-quality ecological data, this approach subjects
theorists’ ideas to rigorous scrutiny and facilitates a better dialogue
between ecological theory and empirical reality.

Theoretical ecologists have often been criticized for validating
models withalow bar for consistency with data” . The low validation
bar allows a multiplicity of models to appear acceptable, even when
their predicted mechanisms are vastly different, leading to insufficient
confidenceinany particular model. However, this raises a question: if
we set a more rigorous quantitative bar, would all ecological models
fail? This concern may explain the limited attention the covariance
criteria have received beyond its originators’”””’. After all, as R. May
wrote, “the models of biological communities tend rather to be of a
very general, strategic kind”*°. We initially expected most ecological
models to struggle to meet the strict covariance criteria. Much to our
surprise, however, we found that the classic Lotka-Volterra model
withstood the test across awide range of consumer-resource systems.
This stands in direct contrast to the common perception, echoed in
many introductory ecology texts***, that the Lotka-Volterra model
is overly simplistic and misses crucial biological details. Our findings
could help explain the recent success of the Lotka-Volterra model in
predicting some ecological patterns® .,

This surprising robustness of the Lotka-Volterra model under our
test of the covariance criteria, especially given its perceived simplic-
ity, raises the question of why traditional validation methods have
often failed to support it in the same systems. Understanding this
discrepancy requires considering how different approaches handle the
complexitiesintroduced by noise in real-world ecological data. While
system identification theory confirms that Lotka-Volterra models
are uniquely identifiable under idealized, noise-free conditions®**,
ecological systems are rarely noise-free. Stochastic perturbations
often introduce more than simple measurement error, potentially
causing subtle but significant effects such as transient phase shifts in
population cycles. Traditional validation methods, which often rely
heavily on capturing the precise timing and amplitude of oscillations
or assume simpler noise structures, can be highly sensitive to these
disruptions. Consequently, they mightincorrectly reject an underlying
Lotka-Volterrastructure due to noise-induced deviations from deter-
ministic expectations. In contrast, the covariance criteria approach
proves more resilient because it focuses on arguably the simplest
statistics—specifically means and covariances—averaged over time.
These properties are inherently less sensitive to the exact phasing or
amplitude of individual cycles, allowing our method to capture the

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02864-8

0.75 ’

0.70 | ¢

0.65 A

0.60 ’

Covariance between abundance and loss rates

0.55 4 ’

T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8

Covariance between abundance and gain rates

Fig. 5| Detecting signals of higher-order interactions. We apply the covariance
criteria to study the presence of higher-order interactions (HOI) ina rocky
intertidal community’. Specifically, whether crustose algae and barnacles
interact with mussels exclusively through pairwise interactions or whether HOI
is present. Three models are evaluated: pairwise interactions only (orange),
higher-order interaction-only (purple) and acombination of both (blue). The

X axis represents the covariance between abundance and gain rates, while the
yaxisrepresents the covariance between abundance and loss rates. Points are
derived from 1,000 bootstrapping replicates. The higher-order only model
(purple) shows a significant mismatch in covariance values, indicating its
inadequacy. The pairwise interaction model (orange) aligns more closely but
still deviates statistically from the observed loss covariance. In contrast, the
modelincorporating both pairwise and HOI (blue) accurately captures the loss
covariance. Supplementary Fig. 23 shows further statistical analysis. These
findings strongly suggest that both pairwise and HOl between crustose algae,
barnacles and mussels play a significant role in influencing mussel dynamics
within this community.

fundamental signature of the underlying ecological dynamics even
amid the complexities of realistic noise and perturbations.

The covariance criteria represent a fundamentally different
approach to model validation than machine learning methods such
as symbolic regression®*%, Those machine learning techniques aim
to directly distil mathematical models from patterns in empirical
data, with minimal a priori knowledge of the system. In contrast, the
covariance criteriaapproach retains theory-based model building at its
core, asitbegins withatheorist-proposed dynamical modelinspired by
natural history. Importantly, covariance criteriaand machine learning
approaches can work together. For example, they could be combined
intoasynergistic modelling pipeline where machine learning suggests
new model structures, theorists use their expertise to explain the
mechanisms and the covariance criteria rigorously test the resulting
models against new data.

The covariance criteria could be useful for evaluating more than
just population dynamics over time, as we focused on here. For exam-
ple, thecriteria could be used to test models for how population abun-
dances vary over space, analogous tocommon ecological approaches
of substituting space for time when aiming to understand long-term
dynamics®*°°. However, doing so would require making additional
assumptions about how model parameters vary across locations.
Future work could also adapt the criteria to model the dynamics of
othertypes of empirical data, such as temporal changes in trait values
or single nucleotide polymorphisms.

Despite their advantages, the covariance criteria have limitations.
The approach is most effective when a species has only few direct

interactions with other species. This is because the criteria partition
the model into gain and loss components without dissecting their
underlying process in any detail. When species interact directly with
many rather than a few species, the gain and loss terms can become
highly complex, parameters often can be cancelled out or system-
atically varied. While the covariance approach is still theoretically
applicable, it requires careful consideration of parameter ranges and
may not be feasible.

As ecology grapples with increasingly complex challenges, from
climate change to biodiversity loss, the need for reliable models has
never been greater. The covariance criteria approach offers a path
towards greater confidence in our ecological understanding by
rigorously testing models across a wide range of problems. By pro-
viding a more rigorous foundation for model validation, we hope
this method can contribute to more accurate predictions of ecosys-
tem responses to environmental perturbations and more effective
conservation strategies.

Methods

Partitioning into gain and loss rates

Our approach partitions any given dynamical equation in the most
direct and mechanistically plausible way: the total gain rate (R,) is the
sum of all positive terms and the total loss rate (R_.) is the sum of the
absolute values of all negative terms. As an example, we partition the
logistic equation, ‘Z—';’ =rN — aN?, into a gain rate R, = rN (representing
linear, density-independent gain) and aloss rate R_= aN? (representing
quadratic, density-dependent loss).

This partitioning is notarbitrary;itis constrained by fundamental
requirements of the underlying theory. Toillustrate, consider an alter-
native but ultimately invalid partitioning of the same logistic equation,
where the gain rate is R, = (r + k)N — aN? (representing nonlinear,
density-dependent gain) and the loss rate is R”_= kN (representing
linear, density-independent loss) for some positive constant k. This
formulation is invalid within our framework for two primary reasons
asdescribed next.

First, gain or loss rates cannot be negative. The proposed gain
term, R, = (r + k)N — aN?,isa parabola thatbecomes negative for large
N, which is biologically and mathematically nonsensical. One might
attempt to resolve this by defining the gain rate with a floor at zero,
thatis, R/ = max (0, (r + KN — aN?). However, this fundamentally alters
the dynamics of the system. The resulting model,

dN

gr = max (0,(r+ N — aN*) — kN (13)

isnowanew and distinct model, not arepartitioning of the classic logis-
ticequation. Thisisimmediately evident as its ecological equilibrium
(where gain equalsloss) isnolongeratN =r/a.

Second, the covariance criteria are derived assuming that the
stochastic noise affecting the overall gain process s statistically inde-
pendent of the noise affecting the loss process. By defining the gain
rate as containing a term ‘+kN’ and the loss rate as being equal to
‘kN’, we imply that the a set of events responsible for the entire loss
process is also a component of the gain process. This introduces a
correlation between a component of the gain fluctuations and the
entirety of the loss fluctuations, violating a key assumption of the
theoretical framework.

More importantly, our method is designed to test a specific pro-
posed phenomenological model. The standard logistic model is the
hypothesis that gain is linear and loss is quadratic. The alternative
scenario—forinstance, one with asaturating gainrate and alinearloss
rate—isadifferent phenomenological model entirely, better captured
byanequationsuchas d—'tv = ™ _ gN.Eachdistinct partitioning of gain
and loss terms constitutes ércunique, testable hypothesis about the
underlying structure of the system.
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Illustrative simulation-based validation
The covariance constraint (equation (3)) is a mathematically derived
equality. Tointuitivelyillustrate its robustness tounmodelled ecologi-
cal complexity, we performed simulations in Fig. 2f. In these simula-
tions, we fix the assumed structure for the predator’s abundance (x).
We then vary the underlying dynamics of the prey (s) or introduce
other complexities into the system, demonstrating that the equal-
ity between the normalized covariances holds regardless of these
external dynamics.

Thefirst dynamic simulated corresponds to the classic Lotka-Vol-
terra predator-prey model:

ds
i as — fBsx (14)
dx
i 8sx —yx @1s)

where ais the intrinsic growth rate of the prey, Sis the predation rate
(effect of predator on prey growth), é is the conversion efficiency
(effect of prey on predator growth) or rate constant for predator growth
and yisthe predator mortality rate.

Toadd more complexity, the second simulated dynamicincludes
atype-2functional response for the prey,

ds s Psx
d_t_a(s_E>_1+s {16)
3—); = 6sx —yx 17)

where aistheintrinsic growthrate of the prey, Kisthe carrying capac-
ity of the environment for the prey, B is the maximum predation rate
orattackrate.

To complicate the dynamical behaviour, the third dynamicis a
chaoticfood web modelinvolving aresource (s;), anintermediate prey
(s,) and the predator (x) feeding on the intermediate prey®:

ds S as;x
s (1-2) - 18
d 'S‘< k) 1+ bys, (18)
9% _ o + 055, — 252X (19)
de — PrTTP2T00h0s,
d = 85, — yx (20)

de

where q, is the attack rate of the intermediate prey on the resource, b,
isthe handling time of the intermediate prey for the resource, ¢, is the
mortality rate of the intermediate prey, ¢, is the conversion efficiency
oftheresourceintointermediate prey, a, is the attack rate of the preda-
torontheintermediate prey, b, is the handling time of the predator for
theintermediate prey.

To introduce environmental variation, we considered a scenario
withan exogenous, time-varying environment affecting the predator’s
mortality rate:

ds

— =as—fsx

de @

d_x = 8sx — cos(t)yx

de 22

where y is the baseline predator mortality rate and cos(t) models the
seasonal variation of mortality.

Finally, to explore the effect of network complexity, we simulated
a species-rich system where the prey dynamics (s) are coupled to a
hundred other species (s)):

ds 100

&=rS+Z;aij (23)
=

((ji_): =8sx —yx 24)

where g;is the interaction strength between the focal prey species (s)
and thejth other species (s)).

Asdemonstrated visually in Fig. 2f, the calculated points for each
model fall along the 1:1line in Fig. 2f. This visually reinforces that the
covariance criterion for the predator x (with assumed gainrate R, and
lossrate R_) holds across these diverse ecological scenarios, highlight-
ingits robustness to many forms of unmodelled dynamics external to
the specific gain-loss structure being tested.

Application to semiparametric models
Asdiscussed inthe main section on ‘Caveats when applying covariance
criteria’, the covariance criteria test may become semiparametric
when model parameters do not cancel algebraically. In such cases,
we advocate evaluating the covariance equality (equation (3)) across
a plausible range of the non-cancellable parameter(s). To demon-
strate this concretely, we performed a meta-analysis using using the
high-quality subset of a large dataset of single-species dynamics. The
global population dynamics database is currently the largest compila-
tion of time series for single species'. As some data are either too short
or too noisy for robust time series analysis, we restricted our analysis to
the subset selected by ref. 92, which contains 172 time series spanning
138 different taxa and 57 sampling locations.

We tested two common single-species growth models where
parameters do not fully cancel. The first one is the theta logistic
growth model®*"*

(25)

where 6> 1isthe non-cancellable parameter. The second is the sublin-
ear growth model**°:

dN

= =rNK—bN 2
ik b (26)

where the parameter O < k <1is non-cancellable.

For each model, we systematically varied the non-cancellable
parameter (6 or k) across its biologically relevant range. We found
that these models consistently failed the covariance test across the
parameter ranges for almost all datasets, providing strong evidence for
theirstructuralinadequacy in describing these populations. Detailed
results and specific parameter ranges explored are presented in Sup-
plementary Note 4.

Nature of fluctuations in covariance criteria

The covariance criteriaassume that fluctuations are primarily driven
by the deterministic gain (R,) and loss (R_) processes. To examine how
additive noise might affect this, we formalize ageneral scenario where
theratesincludenoise: R, =R, +e,and g~ = R_ + ¢_ where the terms
€. and e_are stochastic noise impacting the gain and loss processes.
We assume these are independent noise processes, each with
zero mean. Crucially, this general formulation allows the noise affect-
ing gain (e,) to differ from that affecting loss (¢_) and permits both
to be density-dependent (functions of abundance x) or density-
independent.
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The ratio of covariances in the presence of noise then
becomes:Next we discuss when the new constraint (equation (27))
reduces to the original constraint (equation (3)):

(Ser)) ()

=( Cov(R, ,x)+Cov(es ,X) )/ ( Cov(R_,x)+Cov(e_,x) ) %

Linearity of covariance and mean

(Re)* (e4) (R-)+(e-)

_ { Cov(R.,x)+Cov(e: ,x) Cov(R-,x)+Cov(e- ,x)
'( R+ )/ ( R )

Mean of noise is zero

(27)

Density-independent noise. If the noise € is density-independent,
then Cov(R,,x) = Cov(R_x) = 0 because the noise is uncorrelated with
the populationsize x. In this case, the covariance ratio simplifies back
to the original noise-free condition (equation (3)) and the covariance
criterion remains valid.

Density-dependent noise. When the noise € is density-dependent,
Cov(R,,x) and Cov(R_,x) are not zero and can significantly affect the
covariance ratio. The impact depends on the relative magnitude of
these covariance terms.

«  When gain/loss processes dominate noise, meaning that
Cov(R,,x) » Cov(e,x) and Cov(R_x) » Cov(e_x), then the additional
covariance terms due to noise are negligible and the covariance
criterion still holds approximately (because Cov(R,,x) + Cov(e, x) =
Cov(R.x)).

« Incontrast, if the density-dependent noise contributes
significantly to the fluctuations, the original covariance
criterion no longer applies. In this case, the noise must be
explicitly accounted for in the analysis. However, the form of
density-dependent noise is often unknown or difficult to char-
acterize in ecology. Without specific knowledge of how noise
depends on population size, it is challenging to adjust the covar-
iance criterion to account for it. This limitation makes it difficult
to apply the criterion accurately when density-dependent noise
plays a significant role.

Allthe arguments above are mathematically rigorous. To see how
these principlesapplyin practice, we performed a detailed simulation
study (Supplementary Note 5). The results confirm that the valid-
ity of our method depends on the balance between the determin-
istic ‘signal’ and the stochastic ‘noise’. Specifically, our simulations
show that the covariance criteria are extremely robust to additive
(density-independent) noise. For density-dependent noise (both
multiplicative and demographic), the test performs reliably at low
to moderate intensities. Its accuracy only diminishes when the noise
becomes strong enough to dominate the dynamics of the system and
obscure the deterministic signal.

Implementation of comparative methods

To benchmark the covariance criteria against standard model valida-
tion techniques, particularly for the predation functional response
case study (Fig. 3), we applied three common approaches to this
dataset”. The goal was to assess if these methods could distinguish
between the competing functional response models as effectively as
the covariance criteria.

Regression on inferred derivatives. This method involves linear
regression on the inferred derivatives of the population abundances,
leveraging the linear relationships derived from transforming the
generalized Lotka-Volterraequations. Specifically, the Lotka-Volterra
equations for species (x;) can be written as

d logx;

=r+Y ax; 28
dt f ;,x, (28)

where r; is the intrinsic growth rate and g are interaction strength

between species x; and x;. This equation shows the linear relationship
between the rate of change of the logarithm of abundances and the
abundances of the interacting species. This relationship makes alinear
regression possible. We then easily set up linear regression models for
each species. The key challenge is inferring the derivatives - x;dt

lo

numerically from noisy data. A naive finite difference approximation

dlogx;  log(xi(tx1)) — log (xi(¢0))

~ 29
dr Ley1 — b @9)

amplifies noise, leading to unreliable estimates. To mitigate this, we
used the R package gauseR, which provides optimized functions for
derivative estimation using smoothing techniques.

Bayesian nonlinear ODEs modelling. While regression fitting
approaches are useful, they might still be biased as they lack the direct
modelling of ordinary differential equations (ODEs). Therefore, we
alsoimplemented a Bayesian framework. Instead of directly fitting the
parameters, we used aniterative process: we start with aninitial guess
for the parameters, run a simulation of the Lotka-Volterramodel and
then update the parameters on the basis of the comparison between
the simulation output and the observed data. This processis repeated
until the model converges to a good fit. Specifically, we used Markov
chain Monte Carlo methods to sample from the posterior distribution
ofthe parameters, allowing us to quantify uncertainty in the parameter
estimates. We alsoincorporated uncertainties intheinitial abundance
measurements, maximizing the use of available information. In our
Bayesianmodel, we specified the Lotka-Volterra dynamics within the
Stan language using the brms package in R, which facilitates fitting
Bayesian models with complex hierarchical structures and custom
likelihoods. We thenused the ode_rk45 solver to numerically integrate
the ODEs over time.

Symbolic regression with deep learning. Symbolicregressionaimsto
infer the underlying equations governing a system directly from data,
without assuming a specific model form. This approach has gained
attentionin ecology®***”. However, traditional symbolic regression meth-
ods are often sensitive to noise, which is prevalent in ecological time
series. To address this, we used a state-of-the-art method of symbolic
regression via deep learning®. This method uses a transformer neural
network architecture, similar to those used in large language models,
tolearnthe mathematical relationships betweenvariables. The trained
neural network, titled odeformer, has atotal parameter count of 86 mil-
lionand was trained on a dataset of 50 million samples of diverse ODEs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Empirical data of aquatic invertebrate and the green algae are
available from www.nature.com/articles/s41586-019-1857-0.
Empirical dataset of consumer-resource dynamics is available
from https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12291.

Code availability
The R package ecoModelOracle to run the analysis is available via
GitHub at https://github.com/clsong/ecoModelOracle.
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datasets are drawn from several key sources cited in the literature, including a long-term, replicated dataset of an aquatic predator-
prey system, a compilation of consumer-resource time series from diverse ecosystems, a long-term dataset of a rocky intertidal
community in New Zealand, and a curated subset of single-species time series from the Global Population Dynamics Database.

Sampling strategy The core of our analysis is the application of the covariance criteria. For a given ecological model and a species' time series, we
partition the model's dynamics into terms representing the total gain rate and loss rate. We then calculate the normalized
covariances of these inferred rates with the observed species abundance over the time series. The model is considered valid if the
normalized covariance of the gain rate with abundance is equal to the normalized covariance of the loss rate with abundance. To
assess statistical uncertainty and test this equality, we employ a bootstrapping approach, where we repeatedly resample the time
series data with replacement to generate distributions for the two normalized covariance terms.

Data collection This study involves the analysis of pre-existing, published data. We did not perform new experiments or field observations. The
specific data collection protocols for each dataset are detailed in the original publications from which the data were obtained.

Timing and spatial scale  The timing and spatial scale of the data vary across the different studies we analyzed. For example, the rocky intertidal community
data were collected monthly over a period of more than 20 years at a single location. The consumer-resource datasets are typically
from laboratory microcosm experiments with frequent sampling over many generations. The Global Population Dynamics Database
datasets represent a wide variety of sampling frequencies and durations from many distinct locations.
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Data exclusions Our analysis requires time series of sufficient length and quality to reliably estimate covariance. For the meta-analysis of single-
species dynamics, we explicitly used a curated subset of the Global Population Dynamics Database, which excludes time series that
are too short or noisy for robust analysis. For other analyses, we relied on datasets previously established in the literature as being of
high quality for studying population dynamics.

Reproducibility The analyses presented are reproducible. The primary data sources are publicly available and are referenced with citations and,
where possible, URLs in the manuscript. All computational methods and statistical analyses were performed using our custom R
package, ecoModelQOracle, which is publicly available on GitHub.

Randomization This is a computational study based on observational and experimental data, so there was no randomization of subjects to
experimental treatments. However, randomization is a key component of our statistical procedure. We use bootstrapping, which
involves repeatedly drawing random samples (with replacement) from the original time series, to generate distributions of our test
statistic and quantify uncertainty.

Blinding Not applicable because published data were used and we did not perform experiments or observations.
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Did the study involve field work? []ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

NXXNXNXXX s
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Plants

Plants

Seed stocks Not applicable because published data were used and we did not perform experiments or observations.

Novel plant genotypes  Not applicable because published data were used and we did not perform experiments or observations.

Authentication Not applicable because published data were used and we did not perform experiments or observations.
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