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Abstract

Beta diversity—the variation among community compositions in a region—is

a fundamental measure of biodiversity. Most classic measures have posited

that beta diversity is maximized when each community has a distinct,

nonoverlapping set of species. However, this assumption overlooks the ecologi-

cal significance of species interactions and non-additivity in ecological sys-

tems, where the function and behavior of species depend on other species in a

community. Here, we introduce a geometric approach to measure beta diver-

sity as the hypervolume of the geometric embedding of a metacommunity.

Besides considering compositional distinctiveness as in classic metrics, this

geometric measure explicitly incorporates species associations and captures

the idea that adding a unique, species-rich community to a metacommunity

increases beta diversity. We show that our geometric measure is closely linked

to and naturally extends previous information- and variation-based measures.

Additionally, we provide a unifying geometric framework for widely adopted

extensions of beta diversity. Applying our geometric measures to empirical

data, we address two long-standing questions in beta diversity research—the

latitudinal pattern of beta diversity and the effect of sampling effort—and pre-

sent novel ecological insights that were previously obscured by the limitations

of classic approaches. In sum, our geometric approach offers a new and com-

plementary perspective on beta diversity, is immediately applicable to existing

data, and holds promise for advancing our understanding of the complex rela-

tionships between species composition, ecosystem functioning, and stability.

KEYWORD S
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RETHINKING THE CONCEPTUAL
FOUNDATION OF BETA DIVERSITY

Biodiversity is not solely about the number of species
within a particular locale; it also encompasses the varia-

tion or heterogeneity in species composition across differ-
ent regions—a concept known as beta diversity (Anderson
et al., 2011; Mittelbach & McGill, 2019). Since its inception
in the mid-20th century (Whittaker, 1960, 1972), the con-
cept has functioned as a bridge linking local ecological
processes with broader regional patterns, offering valuable
insights into the forces shaping the distribution of life.Chuliang Song and Muyang Lu contributed equally to this study.
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Despite its undeniable importance, defining and mea-
suring beta diversity remains highly debated in biodiver-
sity research. This lack of a singular, universally accepted
framework is evident in the multitude of metrics pro-
posed over the years (reviewed in Anderson et al., 2011;
Tuomisto, 2010a, 2010b). Some recent notable measures
include Hill numbers (Jost, 2007; Ohlmann et al., 2019),
β-deviation (Kraft et al., 2011; Xing & He, 2021),
turnover–nestedness decomposition (Baselga, 2012;
Legendre, 2014), and variance of community composition
matrix (Legendre & De C�aceres, 2013). Each metric offers
a distinct lens through which to view spatial variation.
This richness in metrics reflects the inherent complexity
of encapsulating the multidimensional nature of commu-
nity differences within a single measure—a challenge
that is both inevitable and, in many respects, desirable.

However, amidst this richness of metrics, we might
ponder whether a certain conceptual narrowness persists.
While these measures, which we may collectively refer to
as “classic measures”, offer diverse mathematical formu-
lations, they all adhere to a shared conceptual foundation
of taxonomic distinctions. This shared foundation has
provided valuable methodological consistency, but it
leaves room for additional perspectives on the core
underlying ecological question: what does it mean for
one community to be different from other communities?

To explain the problem in a nutshell, let us consider
two metacommunities (labeled as I and II; Figure 1), both
with two species (labeled as A and B), and either two or
three local communities (labeled as 1–3). For simplicity,
we use the Whittaker’s multiplicative measure of beta
diversity β¼ γ=αð Þ to represent the classic measures.
Metacommunity I (Figure 1A) has one community with
only species A and another with only B, leading to a beta
diversity of 2 (as γ¼ 2 and α¼ 1). In contrast,
metacommunity II (Figure 1A) adds a third community
containing both species A and B, resulting in a beta diver-
sity of 1.5 (γ¼ 2 and α¼ 4=3). Thus, the classic measures
argue that metacommunity I has a larger beta diversity
than metacommunity II (Figure 1B). Note that this is not
a special property of the Whittaker’s multiplicative mea-
sure but satisfied by almost all measures (reviewed in
Legendre & De C�aceres, 2013). This result means that by
adding a unique, distinctive community ( A,Bf g) to
existing communities, the beta diversity of the
metacommunity would decrease.

Fundamentally, the classic measures operate under
the assumption that the community A,Bf g is not different
from, or even redundant to, the variation between com-
munity Af g and community Bf g. This taxonomic-centric
perspective is rooted in an “individualistic” view of ecol-
ogy, wherein the ecological role of a species is considered
independent of the presence or absence of other species.

Under this view, communities with entirely distinct,
nonoverlapping species exhibit the maximum possible
variance in biodiversity.

We propose here, while classic measures have greatly
advanced our understanding, they may benefit from
re-examination in light of the crucial importance of species
interactions and the nonadditive nature of ecological sys-
tems. Extensive research in community ecology—biodiver-
sity-ecosystem function (Gonzalez et al., 2020; Tilman
et al., 2014), trait-mediated indirect interactions (Ohgushi
et al., 2012; Werner & Peacor, 2003), higher-order interac-
tions (Kelsic et al., 2015; Majer et al., 2024), and food web
stabilization through weak interactions (McCann
et al., 1998; Neutel et al., 2002)—has consistently demon-
strated that a community is more than the sum of its parts.
Communities with interacting species are more than mere
assemblies of isolated species; instead, they are ecologically
unique entities whose properties emerge from the interac-
tions among constituent species.

Recognizing that species composition impacts both
community dynamics and ecosystem functions, it com-
pels us to rethink how we measure beta diversity and
how we conceptualize differences among communities.
In the example from Figure 1, the community A,Bf g
behaves differently, both dynamically (Angulo
et al., 2021; Levine et al., 2017) and functionally (Maron
et al., 2018; van der Plas, 2019), from the communities
with only Af g or Bf g. Consequently, we contend that
community A,Bf g should be considered inherently differ-
ent from the communities with only Af g or Bf g. To gen-
eralize, the introduction of a unique, distinctive,
species-rich community composition to a
metacommunity should increase, rather than decrease,
the diversity within it. Following this logic, contrary to
classic measures, we propose assigning a higher beta
diversity to metacommunity II than to metacommunity I.

To address this conceptual gap, we introduce a new
measure of beta diversity using an intuitive and visual
geometric approach, which we term geometric beta diver-
sity. The central idea of this geometric approach is to
view the metacommunity as a geometric object residing
in hyperspace and then quantify its beta diversity as the
hypervolume of the geometric object. Firstly, we illustrate
the key ideas with simple examples and provide a gener-
alization to metacommunities with arbitrary structures.
Then, armed with this geometric perspective, we provide
a unified treatment of common variants beyond basic
beta diversity: duplications in presence/absence data,
temporal changes, community/species-specific contribu-
tions, turnover–nestedness decomposition, and account-
ing for species similarity and functional
complementarity. In contrast, classic approaches require
different formalisms to deal with these variants. We then
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show this geometric approach is linked to and naturally
extends classic measures of beta diversity based on gener-
alized covariance and information theory. Lastly, we
apply our hypervolume measure of beta diversity to
empirical datasets, including the trend of beta diversity
along longitude and the sampling efforts. By rethinking
the conceptual foundation of beta diversity, we aim to
open a new conversation where species associations—not
just taxonomic differences—are central to spatial varia-
tions. This shift in focus could be particularly fruitful for
understanding ecosystem functioning and stability.

GEOMETRY OF BETA DIVERSITY

Most definitions of beta diversity stem from algebraic
manipulations of metacommunity properties
(Anderson et al., 2011). Here, we provide an alterna-
tive geometric approach. This approach is grounded in
the idea of embedding an arbitrary metacommunity as
a hyper-dimensional geometric object. We will show
that this geometric shape of metacommunity provides
a unifying bridge to various definitions of beta
diversity.

A.Hypothetical metacommunuties C.Geometric measure of beta diversity

Metacommunity I Metacommunity II

3

2
1

B.Traditional measures of beta diversity

A B

1
2

A B

Step 1: Represent metacommunity composition as a matrix

Community 1

Species A

Sp
ec

ie
s
B Community 2

Metacommunity I Metacommunity II

vol vol
Hypervolume

Embedded
dimension

Rescaling of
hypervolume

Whittaker's multiplicative metric

tra

Metacommunity I

tra

Metacommunity II

Community compositionOrigin Embedded metacommunity P

Step 2: Geometric embedding of the metacommunity matrix

Species A

Sp
ec

ie
s
B Community 2 Community 3

Community 1

Step 3: Beta diveristy as hypervolume

Metacommunity I Metacommunity II

Metacommunity IIMetacommunity I

Community 1 Community 2 Community 1 Community 2 Community 3

F I GURE 1 Illustration of the geometric approach to beta diversity. Panel A shows two hypothetical metacommunities (labeled as I–II)
with two species (labeled as A and B) and up to three local communities (labeled as 1–3). The two communities of metacommunity I consist

of species A only and species B only, respectively. The three communities of metacommunity II consist of species A only, species B only, and

species A,B together, respectively. Panel B shows that the classic measures of beta diversity asserts that metacommunity I has a higher beta

diversity than metacommunity II. We show only the case for Whittaker’s multiplicative metric, but the qualitative order would be the same

for all classic measures of beta diversity. Panel C illustrates the key steps of our geometric measure. The first step is to turn the

metacommunities in Panel A into the equivalent matrix representations. This matrix is known as community composition matrix, where the

rows represent communities, the columns represent species, and elements represent species presence/absence. More generally, the elements

can be any measure of species importance, such as abundance or biomass. The second step is a geometric embedding of the

metacommunity. Here, as we have a smaller number of species than the number of communities, the number of species determines the

dimension and axis of the embedded space (2-dimensional space), while the communities determined the embedded points (blue points).

Note that the origin (red point) is automatically embedded because adding an empty community should not affect beta diversity. The

metacommunity is now realized as the spanned geometric object (green area; denoted as P) by all the embedded point and the origin. The

third step is to measure the beta diversity as the normalized hypervolume of the geometric object: βvol ¼ d× vol Pð Þð Þ1=d, where d is the

embedded dimension (2 here as there are two species). Within this measure, metacommunity 1 has a lower beta diversity than

metacommunity II, opposite to the classic measures. The clip arts are obtained from and licensed by Adobe Stock.
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Illustration of the basic idea

To illustrate the basic idea, let us consider again the
hypothetical examples of metacommunities in Figure 1.
Recall that in metacommunity II, community 1 only has
species A, community 2 only has species B, and commu-
nity 3 has both species A and B (middle panel in
Figure 1A). We can represent the metacommunity in a
matrix form (Figure 1B):

SpeciesA SpeciesB

Community 1

Community 1

Community 1

1 0

0 1

1 1

0
BB@

1
CCA

where the columns denote species, the rows denote the
communities, and the elements denote whether the given
species is present in the given community (1 for presence
and 0 for absence). We call this matrix form the
metacommunity matrix. Note this matrix form is also
known as a community matrix in the literature
(Legendre & De C�aceres, 2013).

The crux of our new definition of beta diversity is to
interpret this matrix as points in a hyper-dimensional
space. In this example, the space is 2-dimensional (each
species as an axis) and we have three points (rows in the
matrix: 1,0ð Þ, 0,1ð Þ, and 1,1ð Þ). The middle panel (step 2)
of Figure 1C illustrates the geometric embedding of the
matrix. Beta diversity is related to the volume spanned by
these points together with the origin. The ecological
rationale to add the origin is known as double-zero asym-
metry (appendix S3 of Legendre & De C�aceres, 2013):
beta diversity should not change when we “add” a ghost
species that does not exist in any of the communities
(which is the origin in the space), because such a ghost
species is not interpretable (Whittaker, 1972). Thus, the
origin must be included for ecological consistency of beta
diversity.

With this geometric embedding (Figure 1C), we can
see that metacommunity II, which has three distinct
community compositions, has a volume of 1 as a
square with side length 1. In comparison, meta-
community I, which has two distinct community com-
positions, has a volume of 0.5. Thus, this hypervolume
approach naturally resolves the discrepancy regarding
when beta diversity is maximized: more distinct com-
positions correspond to more unique points in the
hyper-dimension, which leads to greater hypervolumes.
Note that the hypervolume would be minimized (¼ 0)
if all communities have identical compositions, which
align with the intuition of beta diversity with
non-additivity.

To make the hypervolume measure represent an
effective number of communities with two species
(Jost, 2007), we define beta diversity βvol in this example
as the rescaled volume of the raw volume vol Pð Þ:

βvol ≔ 2× vol Pð Þð Þ1=2: ð1Þ

With this definition, the metacommunity I has a beta
diversity of 1.4, while the metacommunity II has a beta
diversity of 2 (the highest possible beta diversity).

Generalization to an arbitrary
metacommunity

We can generalize the simple cases above to complex
metacommunities. For a general metacommunity with N
local communities and γ species, we can represent it
using a general metacommunity matrix Z, where each
row represents a local community and each column rep-
resents a species:

Z¼
z11 … z1γ
… ∖ …
zN1 … zNγ

2
64

3
75, ð2Þ

where the element zij represents an ecological measure of
the importance of species j in local community i. This
measure can be any measured value, such as presence (1
if present, 0 if absent), abundance (number of individ-
uals), or biomass (total mass of the species in the commu-
nity). A caveat, though, is that zij need to be
appropriately scaled to make it fully comparable across
metacommunities (Legendre & De C�aceres, 2013).

We need to identify the constraint on beta diversity:
the gamma diversity γð Þ, or the number of communities
Nð Þ. The smaller of these two values acts as the con-
straint, determining the dimension of the embedded
space, while the larger value represents the number of
embedded points. This identification ensures that beta
diversity is well defined for all metacommunities. The
motivation behind the constraint is to align with the con-
cept of maximum effective communities in classic mea-
sures. For the case when there are more communities
than species, the Whittaker’s multiplicative measure
asserts that the maximum beta diversity cannot exceed γ
(because the minimum alpha diversity is 1 as every com-
munity has at least one species). Conversely, for the case
when there are more species than communities, the
Whittaker’s multiplicative measure asserts that the maxi-
mum beta diversity cannot exceed N (because the mini-
mum alpha diversity is γ=N as every species would occur
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at least once in some community), which is the con-
straint. For a detailed example of metacommunities with
more communities than species, please refer to
Appendix S1: Section S1.

We can then connect all these embedded points,
along with the origin, to form a geometric shape. This
shape is called the convex hull of the metacommunity.
The convex hull is the smallest shape that encloses all
the points and any point that lies on a line segment
connecting two points within the shape. It is like
stretching a rubber band around all the points; the shape
the rubber band makes is the convex hull. Formally, the
expanded convex hull P of the geometrically embedded
points (representing communities) in the
d¼ min γ,Nð Þ-dimensional space is

P ≔
Xmax γ,Nð Þ

i¼0

λixijλi ≥ 0,
Xmax γ,Nð Þ

i¼0

λi ¼ 1

( )
, ð3Þ

where x0 corresponds to the origin, xi corresponds to
either the i-th column or row of the metacommunity
matrix (depending on which is the constraint), and λi cor-
responds to the weights associated with each point. λi
determines how much each point contributes to forming
this shape. Appendix S1: Section S2 offers a worked-out
example for the metacommunity example in Figure 1.

Following the definition above, our measure of beta
diversity βvol (the underscript highlights the use of
hypervolume) is defined as the rescaled hypervolume of
the convex hull P:

βvol ≔ d× vol Pð Þð Þ1=d, ð4Þ

where d¼ min γ,Nð Þ is the constraint and vol Pð Þð Þ1=d is
the normalized hypervolume. βvol is interpreted as the
number of effective communities, which ranges from 0
to d.

This rescaling of raw hypervolume in Equation (4) is fun-
damental for its interpretation as beta diversity. A heuristic
argument is that, with γ species, the hypervolume beta
diversity should range from 0 (achieved with only 1
unique community composition) to γ (achieved with
2γ − 1ð Þ distinct community compositions). This range of
beta diversity is based on the argument that the effective
number is mostly ecologically intuitive (Jost, 2007). To get
rid of the effects of the exponential increase of distinct com-
munity compositions, we need to take the γ-th root of the
hypervolume. Of course, further rescaling of Equation (4) is
possible depending on different ecological rationales (e.g., if
one wants the beta diversity to range from 0 to 1, we can
simply divide the current measure by d).

To validate the heuristic argument behind the
rescaling of the hypervolume (Equation 4), we compute
all possible beta diversities for metacommunities with
three species (i.e., γ¼ 3). The maximum beta diversity
βvol ¼ 3ð Þ is achieved with 2γ − 1ð Þ¼ 7 distinct commu-
nity compositions, while the minimum beta diversity is
achieved with only 1 distinct community composition.
Figure 2 shows the rescaled hypervolume has positive
saturating association to the number of unique commu-
nity compositions in a metacommunity. Appendix S1:
Section S3 shows the sublinear scaling persists for higher
gamma diversity.

Alongside the positive trend, beta diversity values
exhibit notable variability within the same number of
unique community compositions. While the count of
unique community compositions predominantly influ-
ences beta diversity, the distinctiveness of these composi-
tions also plays a crucial role. For instance, if a
metacommunity already includes a community with spe-
cies composition A,Bf g, adding a new community with
composition Cf g would increase beta diversity more than
adding one with composition Af g (see further discussions
in Appendix S1: Section S4).

Analyzing further, our geometric measure demonstrates
a near-zero association with the Whittaker’s ratio measure
β¼ γ=αð Þ across all possible metacommunities
(Appendix S1: Section S5). This finding underscores that
our geometric measure captures distinct ecological informa-
tion, particularly concerning spatial associations (Keil et al.,
2021), that classic metrics overlook. This further proves that
our measure serves as a complement to classic measures
(see Box 1 and Table 1 for more detailed discussion).

A UNIFIED FRAMEWORK OF BETA
DIVERSITY

In the previous section, we have introduced a geometric
approach to define beta diversity through a geometric
embedding of a metacommunity (Equation 4). We have
so far only focused on the most basic case of beta diver-
sity. Many important extensions of beta diversity have
been proposed through the study of beta diversity, such
as the temporal dimension (De C�aceres et al., 2019) and
accounting for species similarity (Leinster &
Cobbold, 2012). Despite their importance, these exten-
sions require different methodologies. Herein lies the
unique strength of our hyper-dimensional embedding: it
inherently preserves all metacommunity information.
This geometric approach offers a more intuitive and
streamlined alternative to algebraic methods, allowing
for a unified treatment of various extensions within beta
diversity theory.

ECOLOGICAL MONOGRAPHS 5 of 22
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Duplications in presence/absence data as
weighted embedding

Information on species presence or absence is often the
only available data in empirical metacommunities.
Mathematically, this means zi ¼ 1 or 0 in the
metacommunity matrix (Equation 2). A common issue
with these data is the duplication of identical community
compositions. However, the definition of βvol
(Equation 4) in the previous section does not take this
into account because communities with duplicated com-
positions all map to the same embedded point.

To account for this, we provide a simple modification
to account for duplicated community compositions
through weighted embedding. We compress all commu-
nities with duplicated compositions into one community
and then assign the frequency of identical communities
as its weight. Figure 4 illustrates an example of a
metacommunity with two species and six communities.

Formally, suppose we have N local communities and
S species in a metacommunity where the number of spe-
cies is the constraint (i.e., S<N). The same modification
can be applied when the number of communities is the
constraint. The species composition of the i-th commu-
nity is xi ≔ zij

� �
. Then, suppose among the N

communities, we have only m effectively unique commu-
nities yk k¼ 1,…,mð Þ, where each unique community yk
appears nk times. Then,

P ≔
Xm
k¼1

λk
m× nkPm

l¼1nl
ykjλi ≥ 08i,

Xk
i¼0

λi ¼ 1

( )
, ð5Þ

where m×nkPm

l¼1
nl
provides the weighted embedding of yk and

λk generates the convex hull. The weight would be 1 if all
communities have distinct compositions (i.e., nk ¼ 1, 8k).
Note that it is straightforward to apply this modification
to weighted embedding to other types of measures of spe-
cies importance, although in empirical data, the modifi-
cation is unlikely to be needed. For example, it is
unlikely that two communities would have identical
abundances for all their constituent species.

As an application, we can ask the following question:
for a metacommunity with two species (labeled as A and
B), what is the proportion of communities with composi-
tions Af g, Bf g and A,Bf g that maximize the beta diversity?
Our metric reaches a maximum when 1/4 communities
have Af g, 1/4 communities have Bf g, and the other 1/2
communities have A,Bf g (Appendix S1: Section S6).

F I GURE 2 Possibilities of beta diversities for metacommunities with gamma diversity ¼ 3. For simplicity, here we only consider

metacommunities with information on species presence or absence. The horizontal axis shows the number of unique community

compositions in the metacommunity, while the vertical axis shows the hypervolume beta diversity (βvol) defined in Equation (4). For clarity

of presentation, we only show metacommunities with nontrivial beta diversity (i.e., βvol > 0). The transparency of the square denotes the

number of distinct metacommunities that have identical beta diversity with the same number of unique community compositions, with

more solid squares indicating more metacommunities. For each square, we illustrate one example of metacommunity. In each

metacommunity, the communities are represented as nodes, and the colors of the nodes represent community compositions (green, blue,

and yellow for species A, B, and C, respectively). Beta diversity βvol increases with the number of unique community compositions in a linear

trend with notable variations. These variations are due to different levels of similarities in species compositions.
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BOX 1 Linking the geometric approach to classic formalisms

Despite the differences in our geometric approach to classic formalisms, our approach has a strong connection
to them. The bridge across different formalisms exists by forming different geometric shapes from the same
embedded points (communities) of the metacommunity. The main text has focused on forming a convex hull
from the embedded points. However, there are other alternative choices (such as an ellipse). Different geomet-
ric shapes would result in different hypervolumes (consequently, different beta diversity). Importantly, different
shapes (i.e., geometric beta diversity) emphasize different ecological properties. Here, in addition to the convex
hull approach in the main text, this box introduces two other geometric approaches in forming shapes.
Appendix S1: Section S8 provides intuitions behind these two definitions, as well as mathematical derivations.

The first approach (Figure 3A,B) connects with the dominant formalism of beta diversity based on general-
ized variance (Legendre & De C�aceres, 2013). We define the hypervolume as the determinant of the covariance
matrix of the metacommunity matrix. The geometric interpretation of this hypervolume is the corresponding
ellipse formed by the embedded metacommunity (Lu et al., 2021). Similar to Equation (4), the geometric beta
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F I GURE 3 Connecting hypervolume beta diversity to classic formalisms. We consider again metacommunity I and II from

Figure 1A). Instead of forming a convex hull from the geometric embedding (Figure 1), we form either an ellipse or effective

support size from it. Panels A and B focus on the hypervolume of elliptic shapes formed by the embedded metacommunity. This

geometric shape closely connects with generalized variance. Specifically, the shape of the ellipse is determined by the structure of

the covariance matrix. Panels C and D focus on the hypervolume of a multivariate Bernoulli random variable as entropy (a.k.a., the

effective size of the support; Grendar, 2006). Darker shading of the color represents a higher contribution of the state to the total

entropy (Appendix S1: Section S8). The metacommunity with more evenly distributed community compositions has a higher

effective size of the support and therefore higher beta diversity.
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diversity βVAR is defined as d×det VAR Xð Þð Þ1=d where X is the metacommunity matrix. Figure 3A,B illustrates
two examples of metacommunity with βVAR. This formalism naturally partitions composition variation into a
classic beta diversity measure and a spatial association component.

The second approach (Figure 3C,D) connects with the dominant formalism of beta diversity based on infor-
mation theory (Chao et al., 2014). We define the hypervolume as the joint entropy H Xð Þ of a multivariate
Bernoulli distribution. The geometric interpretation of this hypervolume is the effective size of the support
formed by the embedded metacommunity (Grendar, 2006). Similar to Equation (4), the geometric beta diversity
βinfo is defined as d×H Xð Þ1=d where X is the metacommunity matrix. Figure 3C,D illustrates two examples of
metacommunity with βinfo. This formalism allows interpreting beta diversity in the language of information, for
example, spatial association as mutual information. This formalism is also closely connected with zeta diversity
(Hui & McGeoch, 2014).

Table 1 summarizes the applicability of these three geometric measures. In particular, the variance-based
geometric measure βVAR can deal with arbitrary data types. This is especially useful with issues of
“point-in-the-middle” in continuous data (i.e., the embedding of a community is inside the convex hull of the
rest of the metacommunity). A detailed example can be found in Appendix S1: Section S9.

TAB L E 1 Summary of applicabilities of geometric beta diversity metrics.

βvol βVAR βinfo
Geometric interpretation Minimum convex hull volume Ellipse volume Effect support size

Community/species contribution Δβvol Univariate variance Marginal entropy

Association contribution Δβvol Determinant of correlation
matrix

Mutual information

Data type Arbitrary measure w/o
point-in-the-middle

Arbitrary measure Presence/absence
only

Species similarity/
complementarity

Both Only similarity No

Computational efficiency Not efficient Efficient Efficient

Proportion of
species A only

Proportion of
species A and B

Proportion of
species B only1

2

3

A B

A.Transformation of
the metacommunity matrix

1

2

A B

B.Transformed embedding

4
5
6

3

No. of unique
compositions

No. of total
communities

No.of communities with
the given composition

Species A

Sp
ec

ie
s
B

F I GURE 4 Weighted geometric embedding of metacommunity with presence/absence data. Panel A shows an example of

metacommunity with two species and six communities. The left matrix is the original metacommunity matrix, while the right one is the

transformed metacommunity matrix. This weighted transformation is given by no: unique compositionsð Þ× no: communities with the given composition
no: total communities .

This embedding scheme ensures that metacommunities without duplications would be identical after the transformation. Panel B shows the

transformed embedding of the metacommunity.
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Temporal turnover of beta diversity as
hypervolume overlap

Beta diversity per se is a measure on the spatial scale. To
fully understand biodiversity changes, we need to study
how beta diversity changes over time and over different
temporal scales (Gonzalez et al., 2020). One approach is
to directly compare beta diversity values at two distinct
time points, revealing the magnitude of change in
among-site differences. While straightforward, this
method overlooks the crucial aspect of turnover—the
extent to which community compositions synchronize
across the entire metacommunity. To capture this infor-
mation, De C�aceres et al. (2019) proposed a method
based on trajectory distances. Here, we measure the tem-
poral change using the overlap between two geometric
embeddings of metacommunities.

To illustrate the idea, let us consider a metacommunity
with two communities and two species. At time tð Þ, com-
munity 1 has only species B while community 2 has both
species A and B (Figure 5A). Then at time t+1ð Þ, com-
munity 1 still has species B while community 2 now only
has species A (Figure 5B). To compute the hypervolume
overlap, we need to assign the orientation of the geomet-
ric embedding. This orientation distinguishes synchroni-
zation versus asynchronization in the metacommunity.
Note that the specific choice of orientation does not

matter as long as it is fixed throughout time. Without loss
of generality, we choose the orientation from origin to
community 1 to community 2. Once we assign the orien-
tation, the hypervolume would have signs, which means
the hypervolume can be negative. In our context, a nega-
tive hypervolume indicates that the orientation of the
geometric embedding is opposite to the chosen reference
orientation, helping us capture whether changes are syn-
chronized or asynchronized in community compositions.
From time tð Þ to t+1ð Þ, the orientations of the geometric
embeddings do not change (both are clockwise). The
hypervolume overlap is simply the overlap between two
positive hypervolumes, which equals to 1/4.

Let us consider another example. Suppose at time
t+2ð Þ, community composition switches from time
t+1ð Þ (i.e., community 1 only has species A, while com-
munity 2 only has species B; Figure 5C). In this case, the
orientations of the geometric embeddings are opposite
(clockwise versus anticlockwise). The overlap now needs
to consider the signed difference, which equals to
0:5− − 0:5ð Þ¼ 1 (despite the seemingly identical shape).

Formally, we can define the changes of beta diversity
from time tð Þ to time t+1ð Þ as

βt! t+1ð Þ ¼
vol Pt+1\Ptð Þ

vol Ptð Þ
� �1=d

, ð6Þ

F I GURE 5 Measure temporal changes of beta diversity using (oriented) hypervolume overlap. We assign an orientation of

hypervolume from origin to community 1 to community 2. The ecological interpretation of the orientation is the direction of

synchronization in the metacommunity. Panels A–C represent metacommunity at time tð Þ to time t+2ð Þ, respectively. From time tð Þ to time

t+1ð Þ, community 1 is unchanged while community 2 loses species B. The changes in community compositions are asynchronized, which

are reflected in the identical orientations of their hypervolumes. In contrast, from time t+1ð Þ to time t+2ð Þ, community 1 and community 2

switch their community compositions. The changes in community compositions are synchronized, which are reflected in the opposite

orientations of their hypervolumes. With the definition of temporal change (Equation 6), beta diversity changes by 0.71 from time tð Þ to time

t+1ð Þ, while it changes by 1.4 from time t+1ð Þ to time t+2ð Þ.

ECOLOGICAL MONOGRAPHS 9 of 22
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which measures the extent of synchronous or asynchro-
nous changes in community composition in the entire
metacommunity. If βt! t+1ð Þ <1, then changes in commu-
nity compositions are asynchronous or synchronous in
the same direction. In contrast, if βt! t+1ð Þ >1, then
changes in community compositions are synchronous in
the opposite direction.

Applying this definition (Equation 6) to the examples
above, the change in beta diversity equals to
1
4=

1
2

� � 1=2ð Þ ¼ 0:71 from time tð Þ to time t+1ð Þ, while
equals to 1=1

2

� � 1=2ð Þ ¼ 1:4 from time t+1ð Þ to time t+2ð Þ.
These results align with ecological intuition of ecological
changes. From time tð Þ to time t+1ð Þ, we see an asyn-
chronous change in community compositions (commu-
nity 1 remains fixed and only community 2 changes),
which is reflected in a relatively smaller temporal change
of beta diversity. In contrast, from time t+1ð Þ to time
t+2ð Þ, we see a synchronous change of community com-
positions (community 1 and community 2 switches com-
position), which is reflected in the relatively large
temporal change of beta diversity.

Community/Species-specific contribution
as hypervolume change

Communities within a landscape contribute unequally to
the maintenance of total biodiversity. Thus, we need to
disentangle their specific contributions to beta diversity.
Here, we measure the community-specific contribution
using the relative change of hypervolumes.

From the perspective of our geometric approach,
a given community contributes to the overall beta
diversity through its embedded points. Thus, to eval-
uate its relative contribution, we can compare the
overlap between the hypervolumes with and without
this community. To illustrate, we use the
metacommunity example in Figure 4. Figure 6A
shows the original metacommunity matrix and its
embedded geometric object. Figure 6B–D shows geo-
metric objects without site 1–3, respectively. A key
observation is the redundancy in beta diversity con-
tributions from different communities. This is evident
in Figure 6, where the sum of hypervolumes in B–D

F I GURE 6 Disentangling site-specific contribution to beta diversity. Panel A shows an example metacommunity and its corresponding

geometric embedding (the same as the example in Figure 4). Panels B–D show the metacommunities without community 1–3, respectively.
The contribution of a community to the overall beta diversity is quantified as the normalized change in the hypervolumes. In this example,

community 1 contributes 0.16, community 2 contributes 0.37, and community 3 contributes 0.47.

10 of 22 SONG ET AL.
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exceeds the original metacommunity’s hypervolume.
To address this redundancy, we introduce a normali-
zation step. Formally, the contribution of community
i to beta diversity is

C Communityið Þ¼ vol P0ð Þ1=d − vol P ∖ ið Þ1=dP
j vol P0ð Þ1=d − vol P ∖ j

� �1=d� 	 , ð7Þ

where P0 denotes the geometric object of the original
metacommunity containing community i, P ∖ i denotes
the geometric object of the metacommunity without com-
munity i, and the summation index j runs through all
communities.

Applying Equation (7) to the above example
(Figure 6), we found community 1 contributes 16%, com-
munity 2 contributes 37%, and community 3 contributes
47%. This method can similarly be applied to quantify
species-specific contributions.

An important feature of our measure is that all
communities with unique composition have a posi-
tive contribution to beta diversity, provided we are
not using the modified schemes on duplications
(Equation 5). This is because the hypervolume
vol P0ð Þ of the original metacommunity is always greater
than vol Pið Þ of the metacommunity without a
community.

In contrast, in the classic measures of beta diversity,
if we use the same scheme above, a community may
have a negative contribution (i.e., its presence decreases
the beta diversity). For example, in the metacommunity
II in Figure 1B, community 3 would have a negative
contribution with the classic measures (e.g., it decreases
beta diversity by 25% with Whittaker’s multiplicative
measure). However, ceteris paribus, conservation man-
agement, in general, should not assign some community
to be “negative” for biodiversity (Hunter Jr &
Gibbs, 2006). Thus, our framework is more appropriate
to assess community contribution in conservation
planning.

To provide a balanced view, alternative methods
exist for measuring community contributions in clas-
sic approaches. For example, the variance-based
approach (Legendre & De C�aceres, 2013) assesses rel-
ative contributions based on each community’s con-
tribution to the overall sum of squares, which
defines variation. In this framework, contributions
cannot be negative either. Applying this approach to
our example, the relative contributions are 31%, 20%,
and 49% for communities 1, 2, and 3, respectively.
While both our geometric approach and the
variance-based approach assign the highest contribu-
tion to community 3, they differ qualitatively in their
assessments of communities 1 and 2.

Species similarity and functional
complementarity as transformed
embedding

Species are more similar to some species than others. To
account for species similarity, we follow Leinster and
Cobbold (2012) by introducing an S matrix whose ele-
ments sij denote how similar species i is to species j. sij
are scaled between 0 (totally dissimilar) and 1 (totally
similar). For example, it can be a genetic, phylogenetic,
or phenotypic (trait) similarity. Note that the S matrix is
not required to be symmetric (i.e., sij may not equal sji),
which could happen with certain measures of phylogenetic
diversity (Chao et al., 2010; Leinster & Cobbold, 2012).

From our geometric perspective, the S matrix corre-
sponds to a linear transformation of the embedded geo-
metric object. For simplicity, let us consider two species.
Originally, 1,0ð Þ denotes the presence of species A while
0,1ð Þ denotes the presence of species B. The two axes are
orthogonal. With the introduction of the S matrix, the
presence of species A is now indicated as

1ffiffiffiffiffiffiffiffiffiffi
1+ s2AB

p , sABffiffiffiffiffiffiffiffiffiffi
1+ s2AB

p
� �

, while the presence of species B is now

indicated as sBAffiffiffiffiffiffiffiffiffiffi
1+ s2BA

p , 1ffiffiffiffiffiffiffiffiffiffi
1+ s2BA

p
� �

. If all species are totally

dissimilar, then the S matrix is an identity matrix. This cor-
responds to the same original axis (which is what we have
been presenting so far; Figure 7A). For another example, if
all species are similar, then the S matrix is a matrix with all
1 s. This corresponds to all axes pointing to the exact same
direction 1,1ð Þ (Figure 7B). In this case, the hypervolume
would always be 0. This agrees with ecological intuition,
because the system effectively only has 1 species and
there is no beta diversity. For a simple example, let us

consider the S matrix
1 0:5

0:5 1

� �
. The hypervolume is

now shrunk into a smaller region (Figure 7C).

Moving to the general case, we formalize the effect of
the similarity matrix S as transforming the axes in the
hyper-dimension space that the metacommunity is
embedded into. To account for this, we simply need to
compute the solid angle between all the axes.
Mathematically, the solid angle Ω Sð Þ (i.e., denoted with
gray curves in Figure 7) formed by the similarity matrix S
is given by (Ribando, 2006; Song et al., 2018).

Ω Sð Þ ¼ 2d

2πð ÞS=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det Sð Þ jp ð
…
ð
N� ≥ 0

e−
1
2N

�TSTSN�
d N�: ð8Þ

With the similarity matrix S, the hypervolume is
transformed into Ω Sð Þvol Pð Þ. Intuitively, we can define
diversity βvol accounting for species similarity as

ECOLOGICAL MONOGRAPHS 11 of 22
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βvol ¼ d× Ω Sð Þ vol Pð Þð Þ1=d: ð9Þ

As the elements Sij are always larger than 0, the
transformed hypervolume and the associated beta diver-
sity is always smaller accounting for species similarity.
This aligns with ecological expectation because species
being more similar would reduce the overall variation in
the metacommunity.

In parallel to species similarity, we can also consider
species functional complementarity. Functional comple-
mentarity means that two species provide additional ecolog-
ical functioning than the addition of the functioning when
both species are isolated (i.e., in monoculture) (Tilman
et al., 2014). Multiple methods are available to quantify
functional complementarity from experiments (e.g.,
Alahuhta et al., 2017; Loreau & Hector, 2001). We represent
functional complementarity using the S matrix, where sij
now denotes the level of functional complementarity spe-
cies j provides to species i. Note that sij are negative, as

they represent functional complementarity. Because of
the negative sij, the hypervolume is now expanded
(Figure 7D) compared with the case without any functional
complementarity (Figure 7A). In general, the transformed
hypervolume is always larger accounting for functional com-
plementarity. This aligns with the ecological expectation
because more variations in ecosystem functioning would
increase the overall variation in themetacommunity.

Nestedness–turnover decomposition as
filling-finding facets

Decomposing beta diversity into turnover and nestedness
components is a major advance in our understanding of
beta diversity (Baselga, 2012; Legendre, 2014;
Tuomisto, 2010a, 2010b). Turnover (also known as
replacement) means that species compositions tend to
replace each other along spatial or other gradients.

Community 1

Species A

Sp
ec

ie
s
B Community 2

A. Species are totally dissimilar B. Species are totally similar

Spe
cie

s ASpe
cie

s B

vol vol

Community 1

Community 2

C. Species are somewhat similar

Species A

Sp
ec

ies
B

Community 2

Community 1

D. Species are functionally complementary

Species A

Sp
ec

ie
s
B

Community 1

Community 2

F I GURE 7 Accounting for species similarity and functional complementarity to quantify beta diversity is equivalent to a coordinate

transformation. All panels show the same metacommunity with different species’ similarity or functional complementarity. The original

metacommunity has two communities where one community only has species A and the other community only has species B (the same as

metacommunity II in Figure 1A). Panel A shows the case where species are totally dissimilar. The hypervolume and the corresponding beta

diversity remain the same. Panel B shows the case where species are totally similar. The hypervolume shrinks to 0 and there is no beta

diversity. Panel C shows the case where species are a bit similar. The hypervolume is larger than 0 but shrinks compared to the case where

the totally dissimilar case. Panel D shows the case where species are functionally complementary. This is reflected in S21 < 0. The

hypervolume is expanded compared with the case where the totally dissimilar case.
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Nestedness (also known as richness difference) means
that species composition in a community is a strict subset
of the species composition in a richer community. Here,
we provide a geometric interpretation of the nestedness–
turnover decomposition.

For illustrative purposes, let us consider two
metacommunities, with one showing complete turnover
and the other being completely nested. The
metacommunity matrix describing the metacommunity
with complete turnover is (the corresponding geometric
embedding illustrated in Figure 8A)

1 0 0

0 1 0

0 0 1

2
64

3
75,

and the metacommunity matrix of the nested
metacommunity is (the corresponding geometric embed-
ding illustrated in Figure 8B)

1 1 1

1 1 0

1 0 0

2
64

3
75:

To compare the geometric embeddings of the two
metacommunities, we observe that all the embedded points
are located on different facets of the cube in the turnover
metacommunity, while all the embedded points are located
on the same facet of the cube in the nested community. In
other words, the turnover process increases the beta diver-
sity by finding new facets, while the nestedness process
increases the beta diversity by filling a facet.

In contrast to previous sections, we did not provide
an analytic measure to partition geometric beta diversity
into nestedness and turnover parts. This is because our
geometric approach suggests that this problem may be
inherently ill-defined: nestedness is essentially a
multidimensional property that cannot be reduced into a
single scalar index. As a metacommunity with γ diversity
has 2γ facets, nestedness should be represented as a
2γ-dimensional vector, where each element denotes how
much each facet is filled. To make it even more compli-
cated, each element in the nestedness vector is
interwinded with another element, as filling one facet
can affect how another facet is filled. Thus, it is difficult,
if not impossible, to summarize the nestedness vector
into a 1-dimensional index without losing ecological
information. Our observation complements the argu-
ments that nestedness and turnover are interactive and
thus cannot be partitioned (Šizling et al., 2022).

A. Nestedness as filling a facet of the polyhedron B. Turnover as finding more facets of the polyhedron

F I GURE 8 Geometric interpretation of nestedness and turnover decomposition. We consider here two metacommunities, both with

three communities and three species. Panel A shows the archetypical example of nestedness. All the points are located on the same facet of

the 3-dimensional cube. The geometric interpretation of nestedness is to fill more facets of the cube. Panel B shows the archetypical example

of turnover. All the points (each represents a community) are located on the different facets of the 3-dimensional cube. The geometric

interpretation of turnover is to find more facets of the cube. These geometric interpretations generalize to higher dimensions, where we

replace cube with high-dimensional polyhedron.
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EMPIRICAL APPLICATIONS

Efficient estimation of beta diversity

To apply our measures of beta diversity to empirical data,
we need to estimate the hypervolumes of the embedded
metacommunity. The hypervolume of geometric shape in
high dimension is notoriously difficult to estimate.
Fortunately, we do not need to compute the hypervolume
of arbitrary geometric shapes, as is typically required for
fundamental niches. Appendix S1: Section S10 discusses
how to compute hypervolume beta diversity (βvol, βVAR
and βinfo) in detail. We have provided an R package
betavolume (https://github.com/clsong/betavolume) to
assist with these calculations. In brief, the exact
hypervolume is only computationally feasible for
metacommunities with 15 or fewer communities or spe-
cies, while the robust approximated hypervolume is com-
putationally feasible for metacommunities that are much
larger (even for more than 10,000 species or communi-
ties). A detailed discussion can be found in Appendix S1:
Section S10. This package provides a user-friendly inter-
face in R language to compute beta diversity βvol and its
various extensions (including duplications in presence/
absence data, community/species-specific contribution,
species similarity, and functional complementarity).

Latitudinal pattern of beta diversity

Through the years, a high-profile debate has centered on
latitudinal patterns of beta diversity (Currie et al., 2004;

Kraft et al., 2011; Qian et al., 2013; Xing & He, 2021). The
dataset used in the debate is forest transect data, which
contains 198 locations along a latitudinal gradient
(Gentry, 1988; Janni, 2003). Each location has a plot that
can be considered a metacommunity of 10 communities.
Previous research using classic measures of beta diversity
has reached contrasting conclusions: beta diversity
decreases along the absolute latitude gradient when using
Whittaker’s multiplicative measure (Currie et al., 2004),
while it shows a null pattern with absolute latitude when
using an alternative measure known as beta deviation
(Kraft et al., 2011). Importantly, both patterns originate
from the exponential decrease of gamma diversity along
the absolute latitude gradient (Figure 9C). Specifically,
the pattern with Whittaker’s multiplicative measure is
fully driven by gamma diversity, as an exponential
decrease in gamma diversity completely masks the effects
of alpha diversity. In contrast, the pattern with beta devi-
ation is due to the ignorance of gamma diversity, as beta
deviation removes the effect of changing gamma diversity
(Bennett & Gilbert, 2016). However, both metrics ignore
the interactive effect of nestedness and turnover in shap-
ing the latitudinal pattern of beta diversity.

We applied our measure βvol to this dataset
(Gentry, 1988; Janni, 2003; Song, 2025). In contrast to the
previous consensus, we find a unimodal pattern of βvol: it
first increases and then decreases along the absolute lati-
tude gradient (Figure 9B). This pattern emerges from the
conflicting trends of the nestedness and turnover compo-
nents of beta diversity. On the one hand, the decreasing
gamma diversity has a negative effect on the turnover
component of the βvol (Figure 9C), because lose a species
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F I GURE 9 The pattern of beta diversity βvol along latitudes and its origin. We show how (variance of) alpha diversity (Panel A), beta

diversity (Panel B), and gamma diversity (Panel C) changes along the absolute latitude gradient. The horizontal axis shows the absolute

latitude, while the vertical axis shows the measure of diversity. Each point represents a metacommunity. We depicted the generalized

additive line with shaded confidence intervals. Panel A uncovers a monotonically increasing trend of the variance of alpha diversity

(adjusted R2 ¼ 0:64). Panel B shows our measure βvol has a unimodal pattern (p¼ 0:99 according to Hartigans’ dip test; Hartigan &

Hartigan, 1985). This is in direct contrast to previous results, where beta diversity is either monotonically decreasing or does not change.

Panel C shows gamma diversity exponentially decreases (adjusted R2 ¼ 0:65).
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in the regional species pool is equivalent to loosing a
facet in the multivariate geometric space (see Figure 8B
in Section 3.5). On the other hand, the increasing vari-
ance in alpha diversity has a positive force on the
nestedness component of the βvol (Figure 9A). This is
because the increasing difference in alpha diversity across
communities increases the chance of filling a facet
(Figure 8A). The high gamma diversity and low variance
of alpha diversity in the lower latitude suggest that the
metacommunities in the region are characterized by
strong mutual exclusions among species, while the low
gamma diversity and high variance of alpha diversity in
the higher latitude suggest that the metacommunities are
characterized by high nestedness.

Note that the unimodal pattern is not our key take--
away. Given the spatial and temporal biases in global bio-
diversity datasets (Gonzalez et al., 2016; Hughes
et al., 2021), there is plenty of room for disagreement on
which is the true latitudinal pattern of beta diversity.
Nonetheless, as the nestedness and turnover components
interactively shape beta diversity gradients, a satisfactory
measure of beta diversity should be able to account for
the effect of both. Our measure βvol is capable of doing
this, while previous measures either mostly only extract
the information captured by gamma diversity or inappro-
priately account for the effect of the nestendess and turn-
over components (Šizling et al., 2022).

How sampling efforts affect beta diversity

In empirical estimation of beta diversity, sampling efforts
play a prominent role. That is, with classic measures of
multiple-site beta diversity, beta diversity always
increases when more sites are sampled. This increase in
beta diversity is mainly driven by the increase in gamma
diversity (Bennett & Gilbert, 2016; Xing & He, 2021).
However, this begets two problems: first, more sampling
may not pay off, as it provides exponentially diminishing
returns; second, we cannot distinguish which
metacommunity is more spatially heterogeneous. A
potential solution to these problems is to implement
some scaling method to adjust classic measures according
to sampling effort, ensuring a more standardized compar-
ison. Nevertheless, our measure βvol inherently addresses
these problems without necessitating any modifications.
Unlike classic measures, βvol does not automatically
increase with greater gamma diversity. Instead, an
increase in gamma diversity expands the dimensionality
of the metacommunity’s embedded space, which could
lead to a decrease in the rescaled hypervolume. This
characteristic of βvol allows a more accurate measure of
spatial heterogeneity of metacommunities without being

disproportionately influenced by the number of species
(gamma diversity) or the scale of sampling efforts.

As a proof of concept, we focused on two datasets
from Bennett and Gilbert (2016) and Song (2025). One
dataset contains 112 plots, each 1 m2, in early succes-
sional fields in the Koffler scientific reserve in Ontario,
Canada. Another dataset contains 85 forest plots, each
50 m2, at Mont St. Hilaire near Montreal, Canada
(Gilbert & Lechowicz, 2004). These two datasets were col-
lected for different purposes. The data from Koffler
Scientific Reserve were designed to sample a relatively
homogeneous area, while the data from Mont St. Hilaire
were acquired to capture environmental heterogeneity.
Previous research has shown that classic beta diversity in
both datasets would increase with sampling effort with a
power-law scaling (Bennett & Gilbert, 2016; Xing &
He, 2021). Thus, classic measures fail to capture the eco-
logical differences between the two datasets.

We apply our measure βvol to these two datasets
(Figure 10) using the random subsampling procedure of
Bennett and Gilbert (2016). At Mont St. Hilaire, βvol con-
sistently increased with sampling effort, aligning with the
expectation that more intensive sampling in a heteroge-
neous environment uncovers greater species turnover
between plots. Conversely, at the Koffler Scientific
Reserve, βvol initially increased but then declined and
plateaued. This pattern is consistent with sampling in a
more homogeneous environment, where the majority of
species turnover is captured at lower sampling efforts,
and additional sampling yields diminishing returns in
terms of detecting new compositional differences.

Interestingly, the decline in βvol at the Koffler
Scientific Reserve occurs before the constraint on the
embedding dimension switches from site to gamma
diversity (Figure 10B,C). This suggests that the plateau in
βvol reflects a genuine ecological pattern of homogeneity
rather than an artifact of sampling limitations. Thus, our
measure βvol has the potential to solve the long-standing
issue on sampling efforts associated with beta diversity:
more sampling is necessary to detect the ecological differ-
ences in spatial heterogeneity between the two datasets.

DISCUSSION

Why another diversity measure?

The concept of beta diversity is central to spatial ecology
and conservation management (Mori et al., 2018).
However, unlike the established consensus on measures
of alpha and gamma diversity (at least for presence/
absence data) (Chao et al., 2014; Jost, 2007), there is a
long list of beta diversity measures. One may argue that
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the pressing problem now should be classifying or recon-
ciling these measures of beta diversity (Jurasinski
et al., 2009). In this context, it is natural to question the
necessity of introducing yet another measure. We con-
tend our new geometric approach to beta diversity is
much needed because (1) it expands the conceptualiza-
tion of beta diversity, (2) its geometric nature makes it
easily extendible and generalizable, (3) it synthesizes clas-
sic measures, and (4) it provides novel ecological insights.
We discuss these four advantages below.

First, our measure offers a qualitatively different per-
spective from classic measures. It is built upon a core
observation that beta diversity should be maximized
when we observe all possible community compositions in
the region (Figure 1). In short, the more, the merrier. In
contrast, classic wisdom posits that beta diversity is maxi-
mized when each community only has a distinct set of
nonoverlapping species (see review in Legendre & De
C�aceres, 2013). The classic perspective is limited in eco-
logical systems where interactions abound. Thus, our
measure is conceptually justified as long as species inter-
actions in a local community affect species dynamics and
functioning.

It is not a trivial problem to formalize this
expanded conceptualization of beta diversity. To our
knowledge, among the classic measures, the only
exception to classic wisdom is the Shannon diversity
of realized species combinations (Juh�asz-Nagy &
Podani, 1983). This measure proposes to simply count
the number of unique community compositions
(Juh�asz-Nagy & Podani, 1983). However, this measure
ignores quantitatively how community compositions
are different. For example, a community with species
A and B should be more distinct from a community
with species C than from a community with composi-
tion A. We have taken a hypervolume approach to
solve this problem. Hypervolume is an old friend in
ecology and was used most famously by Hutchinson
to frame the discussion of the niche (Blonder, 2018).
The idea of hypervolume has been widely used in

various areas of ecology research (Blonder
et al., 2014; Boucher et al., 2013; Raup &
Michelson, 1965; Violle & Jiang, 2009). Notably,
researchers have measured functional beta diversity
as the overlap between the functional trait spaces of
two local communities (Lu et al., 2021;
Mammola, 2019). In contrast to these previous works,
our measure is fundamentally different as we directly
interpret the hypervolume of the metacommunity
matrix as beta diversity. To do so, we have followed
the idea of Hutchinson, where he interpreted the fun-
damental niche as hyper-dimensional geometric
shapes (Hutchinson, 1957). Our geometric measure
provides a sublinear scaling between beta diversity
and the number of unique community compositions
while it also quantifies the difference between unique
community compositions (Figure 2 and Appendix S1:
Section S3).

Second, our approach provides a unifying framework
for beta diversity. Given the importance of beta diversity,
the basic quantification is far from enough for empirical
study. We have extended our geometric measure to the
following five cases with strong empirical importance:
duplications in presence/absence data (Figure 4), tempo-
ral changes (Figure 5), community/species-specific con-
tributions to beta diversity (Figure 6), species similarity
and functional complementarity (Figure 7), and
turnover–nestedness decomposition (Figure 8). While
these extensions are possible with classic measures of
beta diversity, they often, although not always, require
different theoretical formalisms. In part, this may result
from the fact that most classic measures are algebraic
manipulations of the metacommunity matrix without a
simple geometric interpretation. In contrast, we present a
geometric approach, which is fully visual in 2- or
3-dimensional space. This visual aspect of our geometric
approach permits an intuitive and generalizable ecologi-
cal interpretation. A psychological benefit of our
approach is that humans are intrinsically more familiar
with geometry than algebra (Sablé-Meyer et al., 2021).

F I GURE 1 0 Relationship between sampling effort and biodiversity across two sites: the Koffler Scientific Reserve (a more

homogeneous area) and Mont St. Hilaire (a more heterogeneous area). Panel (A): Beta diversity (βvol) increases with sampling effort at Mont

St. Hilaire (blue), while it plateaus at the Koffler Scientific (orange) Reserve after an initial increase. This indicates that Mont St. Hilaire

harbors higher species turnover between plots than the Koffler Scientific Reserve. Shaded areas represent two standard deviations around

the mean. Panel (B): Gamma diversity (γ) increases with sampling effort at both sites, following a power-law relationship. This aligns with

the well-known species-area relationship. The constraint on beta diversity calculation (dimension of embedding) is determined by the

minimum of gamma diversity (purple) and the number of communities (green). For Mont St. Hilaire, the site is always the limiting factor,

whereas for the Koffler Scientific Reserve, the constraint shifts from site to gamma diversity with increased sampling effort. Panel (C): The

relationship between beta diversity βvol and gamma diversity γ reveals that beta diversity at the Koffler Scientific Reserve declines before the
constraint switches from site to gamma diversity (green to purple). This suggests that the decrease in beta diversity reflects a true pattern of

homogeneity rather than an artifact.
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Thus, our geometric measure is, in general, easier to visu-
alize, interpret, and generalize than classic algebraic
definitions.

Third, our measure provides a unifying approach to
synthesize previous measures of beta diversity. We are
not simply adding yet another measure to the list of beta
diversity measures. Instead, our measure considers new
higher-order information that classic measures have
missed. Despite the variety of classic measures, most of
them can be classified into two schools of thought:
variance-based or information-based. The variance-based
measure considers the diagonal of the covariance matrix
(Legendre & De C�aceres, 2013), while we have in addi-
tion considered the off-diagonal. These off-diagonal com-
ponents ecologically represent the spatial associations of
species (Figures 1 and 3). The most commonly used
information-based measure considers the pooled mar-
ginal entropy of a joint distribution (Jost, 2007), while the
joint entropy takes their mutual information into account
(Juh�asz-Nagy & Podani, 1983). In other words, previous
measures of beta diversity have a geometric basis, and
our approach reveals their hidden geometric nature.

Fourth, our measure provides novel ecological
insights into the patterns in empirical data. We have
focused on two important empirical issues: global syn-
theses of biodiversity data and sampling efforts.
Focusing on global syntheses, classic measures are
masked by the exponentially changing gamma diver-
sity; thus, the latitudinal pattern is mostly driven by
gamma diversity. In contrast, our measure can reveal
the joint effects of alpha and gamma diversity in shap-
ing the patterns of beta diversity (Figure 9). Focusing
on the sampling efforts, classic measures fail to reveal
additional information with increasing sampling effort.
This is because classic measures are again masked by
increasing gamma diversity with increasing sampling
effort. In contrast, we show that increasing sampling
effort is necessary to detect hidden spatial heterogene-
ity, and our measure can help quantify this heteroge-
neity (Figure 10). Besides the demonstrated examples,
we also expect that our metric should be particularly
useful in determining the relationship between species
composition and ecosystem functioning (Grman
et al., 2018; Mori et al., 2018) and stability
(McGranahan et al., 2018) because it explicitly takes
species association into account. When applied in the
temporal context, the hypervolume-based beta diversity
is also a measure of community change predictability
(De C�aceres et al., 2019; Song et al., 2021); for exam-
ple, in time-lag analysis, higher beta diversity indicates
more random community composition changes over
time while lower beta diversity indicates more direc-
tional changes (Jones et al., 2017).

Is our measure truly beta diversity?

As our geometric approaches diverge from classic
approaches in many ways, this prompts a fundamental
question: Should our measure still be labeled as beta
diversity? We recognize that nomenclature is not merely
semantic but deeply intertwined with the historical evo-
lution and current discourse within the field.

It is widely agreed upon that the concept of beta
diversity refers to the heterogeneity of community com-
position across space. Indeed, this conceptualization was
intentionally broad since its inception (Tuomisto, 2010a;
Whittaker, 1960). Thus, the very notion of “variation”
itself is inherently multifaceted and open to interpreta-
tion. This challenge is not unique to ecology. Consider
the field of statistics, where quantifying uncertainty—a
concept fundamental to statistical inference—has led to a
variety of schools of thought, including bootstrapping,
quantile regression, Bayesian posteriors, and conformal
prediction. Each offers a unique perspective on quantify-
ing uncertainty.

Similarly, in the realm of beta diversity, it is perhaps
difficult to expect any single metric to fully capture all
facets of variation in community composition. This recog-
nition highlights the importance of methodological plu-
ralism. Our geometric measure, we argue, contributes to
this discourse by offering a complementary perspective,
one that expands our conceptualization of beta diversity.
So long as we maintain a critical awareness of the merits
and limitations inherent to each method, the adoption of
diverse approaches can only deepen our understanding
of the distribution of life.

We acknowledge the long and valuable tradition of
pairwise metrics and the spirit of Whittaker’s ratio in
measuring beta diversity. Some have argued that the term
“beta diversity” should be reserved for these classic
approaches, proposing alternative nomenclature for other
measures, such as “pattern diversity” (Scheiner, 1992),
“compositional diversity” (Chelli et al., 2024), and “zeta
diversity” (Hui & McGeoch, 2014). While we respect this
well-intentioned perspective, we caution against termino-
logical fragmentation that may obscure the underlying
unity of purpose: all these measures, in their own way,
contribute to our understanding of variation in commu-
nity composition. Excessive categorization may impede
the cross-fertilization of ideas that are essential for the
unification and advancement of the field.

Ultimately, the choice of which metric to employ
should be guided by the specific research question at
hand and the ecological context of the study. While clas-
sic measures might be well suited for conservation plan-
ning focused on identifying areas with unique species
compositions, our geometric approach offers valuable

18 of 22 SONG ET AL.

 15577015, 2025, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.70008 by U
niversity O

f C
alifornia, L

os A
ngeles, W

iley O
nline L

ibrary on [19/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



insights when the goal is to understand the ecological
processes underpinning biodiversity patterns, particularly
those involving complex species interactions.

Limitations

Like other beta diversity metrics, our method is not with-
out limitations. One major issue is that hypervolume beta
diversity is sensitive to normalization of the elements in
the metacommunity matrix (Legendre & De
C�aceres, 2013). For example, beta diversity is likely to be
different when we consider the absolute versus relative
species abundance. However, we consider it to be a fea-
ture rather than a bug. For example, under some ecologi-
cal rationales, we can argue that a metacommunity with
more individuals, ceteris paribus, is more “diverse” than
another metacommunity with fewer individuals
(Legendre & De C�aceres, 2013). We suggest that every
normalization method requires careful ecological inter-
pretation. As long as we apply the same normalization
method across metacommunities of interest, we can
safely compare which metacommunity has a higher beta
diversity (in accordance with the ecological rationale
behind the normalization).

Another important limitation is the dimensional con-
straint in assessing contributions of species versus com-
munities. Our current formalism (Equation 7) allows us
to evaluate the impact of either species or communities
individually, based on the lesser dimension in the
metacommunity matrix. This constraint restricts our abil-
ity to capture simultaneous contributions from both spe-
cies and community structures in highly diverse
metacommunities. Although methods of dimensional
reduction could theoretically address this, they are com-
putationally challenging and may introduce interpreta-
tive complexities. Future work could explore advanced
embedding techniques or adaptations to reduce this
dimensional constraint.

Future directions

We believe that our proposed measure is readily applica-
ble to existing data. To further expand its applicability,
we envision the following extensions of our geometric
framework. One future direction is to further explore geo-
metric features of the embedded metacommunity. For
example, we have not yet considered its geometric asym-
metry. For example, let us consider two
metacommunities are both embedded as triangles with
identical volume, but one is equilateral while the other
one is not. The ecological differences between them is

that the equilateral metacommunity has more balanced
species distributions across local communities. To quan-
tify the association between geometric asymmetry and
species balance, it might be useful to adapt tools from
studies on the geometric asymmetry in different ecologi-
cal contexts (Grilli et al., 2017; Medeiros et al., 2021).

Another future direction is to develop analytic models
of null models. Null models are widely used in beta diver-
sity analysis to disentangle confounding factors. Analytic
null models are available for many classic measures of
beta diversity (Deane et al., 2022; Lu, 2021; Lu
et al., 2019; Xing & He, 2021). An analytic expression for
βvol is challenging because of the complexity in quantify-
ing hypervolume (Appendix S1: Section S10). However,
βVAR and βinfo are tightly linked to high-dimensional nor-
mal distributions, thus it is possible to obtain analytic
expressions. Furthermore, a promising future direction is
to extend our geometric approach to measure functional
diversity (reviewed in Scheiner et al., 2017).

CONCLUSION

Based on an expanded conceptualization of beta diver-
sity, we introduce a new geometric approach. We have
shown the connections of our new measure to existing
variance- and information-based measures. Our geomet-
ric approach provides a unified way to measure beta
diversity that can deal with duplications in presence/
absence data, temporal change, turnover, nestedness,
species, and functional complementarity. We demon-
strated its application to two datasets and the novel
insights it offers. We have provided the computational
tools needed to apply our approach. Moving forward, our
geometric perspective enriches the ecological toolkit,
potentially enabling researchers to better address the
complexities and nonadditive nature of biodiversity pat-
terns across scales.
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