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Abstract
The complexity of ecosystems poses a formidable challenge for confidently invalidating ecological models,
as current practices struggle to distinguish model inadequacies from the confounding effects of unobserved
biotic or abiotic factors. The prevailing inability to falsify models has resulted in an accumulation of models
but not an accumulation of confidence. Here, we introduce a new approach rooted in queueing theory,
termed the covariance criteria, that establishes a rigorous test for model validity based on covariance
relationships between observable quantities. These criteria set a high bar for models to pass by specifying
necessary conditions that must hold regardless of unobserved factors. We demonstrate the broad
applicability and discriminatory power of the covariance criteria by applying them to three long-standing
challenges in ecological theory: resolving competing models of predator-prey functional responses,
disentangling ecological and evolutionary dynamics in systems with rapid evolution, and detecting the
often-elusive influence of higher-order species interactions. Across these diverse case studies, the
covariance criteria consistently rule out inadequate models, while building strong confidence in those that
provide strategically useful approximations. The covariance criteria approach is mathematically rigorous,
computationally efficient, and often non-parametric, making it immediately applicable to existing data and
models.
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Ecology textbooks grow ever longer, because older theories stick
around even as new ones pile up.

— Stefano Allesina

1 Complexity in invalidating ecological model
Population abundance is the ever-present variable in the equation of life on Earth. To decipher the drivers
behind the fluctuations of population abundance, ecologists construct mathematical models—simplified rep-
resentations that capture an ecosystem’s key dynamics while making judicious sacrifices of nature’s full com-
plexity. This synergy between data and modeling forms the foundation of contemporary ecology (Kingsland,
1991; Grainger et al., 2022). Yet, this endeavor faces a fundamental challenge: how can we confidently ad-
judicate which models provide useful approximations of nature, and which are oversimplified caricatures?
The stark reality is that even for predator-prey interactions, there exist more than 40 distinct models of how
predator feeding rate depend on prey abundance (reviewed in Novak and Stouffer 2021). This plethora of
alternatives stems from the prevailing inability, using conventional practices, to decisively validate somemod-
els and invalidate others against empirical data.
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To illustrate the limitations of current approaches, consider a textbook example of the coupled popula-
tion dynamics of snowshoe hares and Canadian lynx in boreal forests (Leigh, 1968) (Figure 1A). The dynamics
is classically modelled using the Lotka-Volterra (LV) predator-prey model (Figure 1B). A common validation
approach is to compare the qualitative behaviors between data and model prediction (Figure 1C). In this
example, the Lotka-Volterra model predicts coupled cycles of predator and prey abundances with a fixed am-
plitude and period length—the hallmark of the “predation cycle” in graphical predator-prey theory (Volterra,
1926; Rosenzweig and MacArthur, 1963). The qualitative resemblance of the data to these predicted cycles
provides some confidence in the model’s validity. Another common approach is fitting models to data and
assessing goodness-of-fit or forecasting power (Figure 1D). For this example, the predator-prey dynamics can
be approximated with a given set of parameters in LV dynamics, providing support for the proposed model.
These two approaches represent the mainstream for validating models against time series data.
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Figure 1. Common approaches in ecological model validation and limitations. Panels (A) and (B) depict a classic
example of predator-prey dynamics: the population fluctuations of snowshoe hares (blue) and Canada lynx (red), and
the Lotka-Volterra (LV) model as a candidate to describe the underlying processes. Panels (C) and (D) demonstrate two
validation approaches: comparing qualitative behaviors (e.g., cycles in both data and model), and fitting the model to
the data to examine its explanatory or predictive power. Panel (E) highlights challenges in interpreting validation results.
A mismatch between a model and data does not necessarily prove the model is entirely incorrect (case 1), as the
discrepancy could stem from the model being partially incorrect (case 2), unobserved biotic interactions (case 3), or
abiotic influences (case 4). Current methods often cannot decisively determine which of these cases is responsible for
the mismatch.

But what if the model and data diverge? Does that mean the model is invalidated? Returning to the hare-
lynx example, over longer time scales than shown in Figure 1, the observed population cycles diverge from
the classic Lotka-Volterra predictions: in fact, the data suggest a “reversed cycle,” implying the nonsensible
result that hares eat lynx (Gilpin, 1973). However, interpreting such discrepancies is fraught with ambiguity.
One possibility is that these deviations in qualitative patterns invalidate the core assumptions of the Lotka-
Volterra framework, demanding an alternative theoretical model for the entire predator-prey system (Cortez
andWeitz 2014; Case 1 in Figure 1E). Alternatively, the model could accurately describe the dynamics of one
species (e.g. lynx)while failing for the other (e.g. hares) due tomissing factors specific to that species (Stenseth
et al. 1997; Case 2 in Figure 1E). In contrast, it is also possible that themodel correctly describes the lynx-hare
interaction, but fails to include all of the other variables driving the observed dynamics. These could be other
uncontrolled biotic factors (Case 3 in Figure 1E) such as the hare-vegetation interaction (Blasius, Huppert,
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and Stone, 1999) or disease epidemics. Or it could be that there are other uncontrolled abiotic factors (Case
4 in Figure 1E), such as environmental fluctuations altering species parameters over time (Hone, Krebs, and
O’Donoghue, 2011; Yan et al., 2013; King and Schaffer, 2001). In sum, current practices make it challenging
to judge whether the model is truly valid, partially valid, or simply wrong.

This long-standing challenge of model validation has plagued ecology, leaving the true scope of even clas-
sic models like the Lotka-Volterra formulation unresolved. Here, we address this fundamental problem in
ecological modeling by introducing a method originally developed by biophysicists (Hilfinger, Norman, Vinni-
combe, et al., 2016). In essence, this method uncovers the (mostly unique) inherent structure of temporal
covariance between model elements, a constraint that remains invariant regardless of unknown ecological
factors. By leveraging this inherent constraint, we can make strong statements about model validity. In the
following sections, we first introduce the theoretical foundations of this approach. We then demonstrate its
discriminatory power by applying it to three key problems in ecology: resolving debates on the functional
forms of predator-prey interactions, disentangling the interplay of ecology and rapid evolution, and detect-
ing signals of higher-order species interactions. Through these case studies, we illustrate how this rigorous
test of model validity can decisively invalidate flawed models, build confidence in those that provide useful
approximations, and guide the development of more robust ecological theory.

2 Covariance criteria for model (in)validation
In this section, we introduce the theoretical framework for the covariance criteria approach and demonstrate
its application to ecological models and data. We start by presenting the core concepts and mathematical
foundations. We then illustrate how to apply the framework to a simple work-out example with statistical
methods. Finally, we discuss the advantages of this approach over current model validation practices.

2.1 General theoretical framework
The fluctuations in population abundances that we observe in nature arise from a fundamental imbalance
between two opposing forces: the gain rate, which encompasses processes that increase population size (e.g.,
births, immigration, mutualism), and the loss rate, which includes processes that decrease it (e.g., deaths,
emigration, competition). In general, ecological models describing the dynamics of population abundance
can be partitioned in the following form:

d 𝑥

d𝑡
= 𝑅+ − 𝑅− + 𝜉 , (1)

Population abundance

Gain rate Loss rate

Stochastic noise

where 𝑅+ is the gain rate, 𝑅− is the loss rate, and 𝜉 is the stochastic noise. The gain rate 𝑅+ and loss rate 𝑅−
can be complex functions of both biotic (e.g., interactions with other species) and abiotic (e.g., environmental)
factors. Anymeaningful ecologicalmodelmust include this partitioning of gain and loss; otherwise, themodel
would predict either indefinite growth or inevitable extinction. We can illustrate this partitioning using the
predator dynamics from the Lotka-Volterra (LV) model:

d
d𝑡

= 𝛿 − 𝛾 , (2)

Gain rate Loss rate

where denotes the predator and denotes the prey.
When gain and loss rates are perfectly counterbalanced, the population maintains a steady state, or equi-

librium. However, such perfect balance is seldom encountered in the real world. Instead, we witness periods
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where gains outweighs losses, leading to population growth, interspersed with periods where losses domi-
nate, causing population decline. This constant interplay between gains and losses generates the dynamic
fluctuations in abundance that characterize most natural populations.

While it is intuitive that changes in population abundance relate to the gain-loss imbalance,mathematically
quantifying this relationship is challenging. The challenge arises from the fact that the gain and loss imbalance
is related to the rate of change in abundance, not the raw abundance. To resolve this, we can use the concept
of covariance, a statistical measure of how two variables change together. Consider a scenario where gain
rates tend to be higher when the population abundance is high. We can say that the gain rate and abundance
covary positively. Importantly, in a system that fluctuates but avoids unchecked growth, the loss rate must
also increase when abundance is high to counteract the increased gain. Thus, the loss rate and population
abundance must also covary positively.

Formally, this constraint, while grounded in sophisticatedmathematics, is captured in a surprisingly simple
equality (Hilfinger, Norman, Vinnicombe, et al., 2016):

𝙲𝚘𝚟
(

𝑅+, 𝑥
)

⟨𝑅+⟩ ⟨𝑥⟩
=

𝙲𝚘𝚟
(

𝑅−, 𝑥
)

⟨𝑅−⟩ ⟨𝑥⟩
, (3)

Covariance between gain and abundance

Mean gain rates

Covariance between loss and abundance

Mean loss rates

Mean abundance

where 𝙲𝚘𝚟denotes covariance and ⟨ ⟩denotesmean (Figure 2A). Inwords, the equality (Eq. 3) essentially states
that the normalized covariance between gain rate and abundance is mirrored by the normalized covariance
between loss rate and abundance.

Mathematically, this equality is known as the second order moment equation derived from Little’s law in
queuing theory (Little, 1961; Little, 2011). Note that our representation is slightly different fromHilfinger, Nor-
man, Vinnicombe, et al. (2016) as we use a continuous stochastic dynamic instead of discrete one. We do so
because continuous models are more commonly used in ecology, and also because population abundances
are measured as density or biomass that do not have a direct discrete interpretation.

2.2 An illustrated worked-out example
This covariance structure serves as a simple test to validate or invalidate a model. If the model accurately
reflects the observed ecological dynamics, the equality (Equation 3) will hold, and the model passes the test.
If the data and constraint don’tmatch, the equality won’t hold, and themodel is falsified. We call this approach
the covariance criteria.

We next illustrate how the covariance criteria works in practice using the predator dynamics from the
Lotka-Volterra (LV) model (Eqn. 2). The model defines the gain rate as proportional to the product of prey
and predator abundances (representing successful predation leading to reproduction), while the loss rate
is proportional to predator abundance alone (representing mortality). Applying the general covariance con-
straint (Equation 3) to this model, we get:

𝙲𝚘𝚟

(

�𝛿 ,
)

⟨�𝛿 ⟩⟨ ⟩

=
𝙲𝚘𝚟

(

A𝛾 ,
)

⟨A𝛾 ⟩⟨ ⟩

. (4)
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Figure 2. Covariance criteria for model validation. Panel (A) presents the general principle of covariance
criteria: if a model accurately captures the underlying processes, the normalized covariance between the
gain rate and abundance should equal the normalized covariance between the loss rate and abundance.
Panels (B) to (E) illustrate the workflow of this approach to assess whether the Lotka-Volterra (LV) model can
describe predator dynamics in a specific system. Panel (B) shows a subset of the predator-prey data
(Blasius, Rudolf, et al., 2020). Panel (C) shows demonstrates how the LV model partitions predator dynamics
into gain rate (terms causing abundance increase) and loss rate (terms causing abundance decrease). Panel
(D) integrates the modeled gain and loss rates with the observed data to infer the empirical gain and loss
rates across time. Panel (E) calculates the normalized covariances between the inferred gain/loss rates and
predator abundance. If these covariances are equivalent, it strengthens confidence in the model’s validity.
Conversely, significant discrepancies indicate the LV model’s inadequacy in describing the predator’s
dynamics. Panel (F) emphasizes the universality of the covariance criteria (see details in Appendix A). This
means that the criteria hold true even if the model does not explicitly include all factors influencing the
system. To illustrate this, simulations are used where the predator follows the LV model, but the rest of the
ecological community can exhibit arbitrarily complex dynamics. These simulations serve purely as an
illustrative aid, as the method’s core strength lies in its mathematical rigor.
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Since the mean and covariance operators are linear, we can simplify this further by canceling out the
constant parameters 𝛿 and 𝛾 :

𝙲𝚘𝚟

(

,
)

⟨ ⟩⟨ ⟩

=
𝙲𝚘𝚟

(

,
)

⟨ ⟩⟨ ⟩

. (5)

This simplification is important. It lets us evaluate the covariance criterion directly from the observed abun-
dance data without needing to estimate the often unknown parameter values, making it a non-parametric
test.

We next test this model using a subset of data from a planktonic predator-prey system (Blasius, Rudolf,
et al., 2020) (Figure 2B). The data include time series measurements of both predator and prey abundance.
Although we can’t directly observe the gain and loss rates in the data, the model allows us to infer them at
each time point based on the observed abundance data (Figure 2C). For instance, the gain rate is inferred
as the product of prey and predator abundance at each time point (recall that the parameter in front of this
product cancels out in Equation 5).

The covariance criteria then examine how these inferred gain and loss rates covary with the observed
predator abundance (Figure 2C). The scatter plot of inferred gain rate against predator abundance shows
more scatter compared to the plot of inferred loss rate against predator abundance. This is expected because
the predator’s gain rate depends on both prey and predator abundance, while the loss rate depends solely on
predator abundance. However, it is important to remember that the covariance criteria rely on the calculated
covariance values to provide the quantitative measure of the relationship between the rates and predator
abundance, not the visual spread of the scatter plots. In this specific example, both normalized covariances
turn out to be 0.234. This suggests that the LV model, in this case, aligns with the covariance criterion and
adequately explains the observed predator dynamics.

2.3 Addressing noise and limited data
Ecological time series data is often noisy and limited in length, which can make it difficult to draw reliable
inferences from point estimates of covariance values alone. To estimate uncertainty around the covariance
measures, we can use bootstrapping. We repeatedly draw random samples from the original time series
data with replacement and recalculate the gain and loss rate covariances for each resampled dataset. This
generates distributions of covariance that capture the inherent variability in the data.

We then compare the distribution of gain rate covariances and the distribution of loss rate covariances.
To assess the statistical significance of any observed difference between these distributions, we examine the
distribution of their pairwise differences. A significant overlap between the pairwise difference distribution
and zero suggests that the model-predicted equality between the covariances is statistically supported. In
contrast, a pairwise difference distribution that is clearly shifted away from zero provides strong evidence
that the model violates the covariance criteria. To quantify this difference, we calculate Cohen’s d, a standard
measure of effect size between the pairwise difference distribution and zero. A z-score below a threshold
(typically 1.96 for 95% confidence) indicates the distributions are statistically indistinguishable—the covari-
ances are not different from each other, and the model passes the test. This threshold can be adjusted to
control the balance between false positives and false negatives as needed. For the planktonic predator prey
example in Figure 2, the z-score is 0.04, indicating that the two covariances are likely the same.

We have developed the R package ecoModelOracle to streamline this statistical analysis, making it easier
for users to implement the approach.
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2.4 Applicability of the covariance criteria
The covariance criteria works under remarkably broad conditions, thanks to the generality of Little’s Law in
queuing theory (Little, 1961; Little, 2011). It applies rigorously to stationary systems, where long-term statisti-
cal patterns remain constant over time, regardless of whether they follow typical Markovian dynamics (where
the future depends only on the present, as most ecological models do) or more complex non-Markovian dy-
namics (where the ecosystem’s history influences its future, as in the presence of time delays). Moreover, the
criteria also holds for some non-stationary dynamics, like cyclo-stationary systems (where statistical patterns
repeat predictably, as with seasons). One might assume that such broad applicability renders the criteria a
mere abstract principle with limited practical utility. Surprisingly, as we show here, it imposes a stringent test
for models to pass. When the biophysicists who pioneered this method applied it to gene expression data,
nearly all published models failed to meet the criteria (Hilfinger, Norman, and Paulsson, 2016). This means
that when a model does pass the test, we can have strong confidence in its validity.

Due to its generality, the covariance criteria can be used to interrogate models in a more precise manner
than traditional approaches (Figure 1E). First, the criteria directly test the dynamics of individual species, elim-
inating the need to know whether the model is correct for the entire system (Case 1 vs. Case 2 in Figure
1E). For instance, we can validate whether the predator dynamics follow the LV model regardless of whether
the prey dynamics also follow the LV model (‘Lotka-Volterra’ in Figure 2F) or follow a more complex model
(‘complicated prey dynamics’ in Figure 2F). Second, the covariance test is invariant to unknown species that
indirectly interact with the species under examination (Case 3 in Figure 1E). For instance, the test for the
predator remains valid even when we add many other species that only interact with the prey (‘Species-rich
Lotka-Volterra’ in Figure 2F), including interactions that ultimately drive chaotic dynamics (‘Chaotic food web’
in Figure 2F). Lastly, the covariance criteria can sometimes tolerate unknown abiotic factors (case 4 in Figure
1E), particularly when the environment acts as an exogenous driver statistically independent of population
abundance (‘With exogenous environment’ in Figure 2F).

To illustrate the power of the approach, we revisit the long-standing debate on whether the hare-lynx dy-
namics in the Canadian boreal zone adhere to the Lotka-Volterramodel. We do so by applying the covariance
criteria to the full dataset from the system. For hares, the calculated z-score between the distributions of gain
and loss covariances is 4.9, a value that strongly suggests unequal covariances and the Lotka-Volterramodel’s
inadequacy in capturing hare dynamics. In contrast, the z-score for the gain and loss covariance distributions
for lynx is 1.7. This implies that one cannot statistically reject the equality of covariances, supporting the
Lotka-Volterra model as a potentially useful approximation for lynx dynamics. These findings mirror Case 2
in Figure 1, aligning with the hypothesis proposed by Stenseth et al. (Stenseth et al., 1997) that the LV model
might be valid for lynx but not for hares in this predator-prey system.

3 Three Case Studies
In this section, we apply the covariance criteria to tackle three long-standing problems in ecology. We begin
by investigating the fundamental nature of predation, using the criteria to rigorously test different functional
formsdescribing the predator-prey interaction. We then study the integration of rapid evolutionary processes
into ecological models, leveraging the criteria to potentially pinpoint where evolutionary forces significantly
shape species dynamics. Finally, we search for the often-hidden influence of higher-order interactions within
ecosystems, harnessing the criteria to uncover complex relationships that extend beyond simple pairwise
effects.
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3.1 Reverse engineering the nature of predation
Predation is a key force structuring ecological communities (Pringle et al., 2019). Yet, modeling this interaction
remains a challenge. A central debate persists over whether predation is best described by Lotka-Volterra
(in which predation is a function of the product of predator and prey abundances), or instead, additionally
dependent on the ratio of predator and prey individuals in the system. This debate has persisted for decades
(Abrams and Ginzburg, 2000; Arditi and Ginzburg, 2012; Abrams, 2015; Tyutyunov and Titova, 2020; Ginzburg
andDamuth, 2022), partly because traditionalmethods often struggle to definitively rule out alternative expla-
nations (Morin, 2009). Here, we demonstrate how the covariance criteria can help resolve this long-standing
question.

Weexamine three possible prey dynamics: LV dynamicswith andwithout self-regulation, and ratio-dependent
dynamics (Akcakaya, Arditi, and Ginzburg, 1995; Arditi and Ginzburg, 1989),

d
d𝑡

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛼 − 𝛽 , (Lotka-Volterra without self-regulation)

𝛼 − 𝛽1
2
− 𝛽2 , (Lotka-Volterra with self-regulation)

𝛼 − 𝛽1
2
− 𝛽2

+𝑘
(Ratio-dependent)

(6)

Similarly, we consider three possible predator dynamics:

d
d𝑡

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿 − 𝛾 , (Lotka-Volterra with self-regulation)

𝛿 − 𝛾1
2
− 𝛾2 , (Lotka-Volterra with self-regulation)

𝛿
+𝑘

− 𝛾 (Ratio-dependent)

(7)

To rigorously test these models, we analyze a unique long-term dataset with replicated predator-prey
dynamics under various conditions (Blasius, Rudolf, et al., 2020). The dataset tracks the relationship between
the aquatic invertebrate consumer Brachionus calyciflorus and its green algae prey Monoraphidium minutum.
We find that the prey dynamics align most closely with LV dynamics with self-regulation (Figure 3A-C), while
the predator dynamics align most closely LV dynamics without self-regulation (Figure 3D-F). See Figure S2
for the z-score statistical test for each model. For both species, the model with ratio dependent interactions
deviates most from the equality constraint posed by the covariance criteria. Our findings therefore provide
compelling evidence that predation in this system is prey-dependent as posed in the Lotka-Volterra model,
and not a function of the ratio of predators and prey in this system.

In addition, our analysis sheds light on a long-standing question about where self-regulation emerges in
predator prey systems. We find that self-regulationmay play a role in the dynamics of the prey species, but is
not supported in the predator species. This observation is consistent with the broader ecological hypothesis
that top predators lack strong self-regulating mechanisms (Pimm and Lawton, 1977; Tilman, 1982; Chesson,
2012; Song and Saavedra, 2021). One consequence of self-regulation in the prey species, as found here,
is an implied role for stochasticity in shaping the persistent cycles characteristic of predator-prey systems.
Without stochasticity, self-regulation within the prey population drives the system towards a stable equilib-
rium (Murdoch, Briggs, and Nisbet, 2013). However, when this self regulation interacts with environmental
stochasticity, the equilibrium is disrupted and transient dynamics can cause indefinite fluctuations(Gurney
and Nisbet, 1978; Nisbet and Gurney, 2003).
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Figure 3. Reverse engineering the nature of predation. We apply the covariance criteria to study the
functional form of the predation dynamics. We analyze the dataset from Blasius, Rudolf, et al. (2020) with 10
replicates of an experiment studying the aquatic invertebrate Brachionus calyciflorus (prey) and the green
algae Monoraphidium minutum (predator) under varying conditions. Rows represent either prey (blue) or
predator (orange) dynamics, while columns compare three models: Lotka-Volterra with self-regulation,
Lotka-Volterra without self-regulation, and a ratio-dependent model. Each panel compares normalized
covariances between gain/loss rates and abundance (x and y-axis, respectively), and the diagonal line
denotes where the two covariances are equal. Each data point represents a replicate, and the error bars
depict the 95% confidence interval. The value in the upper-left corner of each panel displays the average
z-score of the replicates within that panel. We find that the Lotka-Volterra model with self-regulation best
captures prey dynamics, while the Lotka-Volterra model without self-regulation best describes predator
dynamics (see Figure S2 for further statistical details). These findings suggest that a prey-dependent
functional form, as used in the Lotka-Volterra model, is more appropriate to describe predation in this
system compared to a ratio-dependent model.

3.2 Dissecting ecological and evolutionary processes
Evolutionary and ecological processes can operate on similar timescales (Schoener, 2011; Loreau, Jarne, and
Martiny, 2023). Prey-predator dynamics, in particular, have emerged as a prime example of such rapid evo-
lution (Yoshida, Jones, et al., 2003; Mittelbach and McGill, 2019). However, a major modeling challenge lies
in determining where in the ecological system to incorporate evolution: should we focus on prey evolution
(Marrow, Law, and Cannings, 1992; Abrams, 1997), predator evolution (Abrams, 1992), or their simultaneous
co-evolution (Dieckmann and Law, 1996; Gavrilets, 1997). Unfortunately, multiple models, each incorporat-
ing different assumptions about which species evolve, can produce similar observable patterns, including
for example the synchrony of predator and prey population cycles (Abrams, 2000). This makes it difficult to
pinpoint the specific evolutionary processes operating within the interaction based solely on qualitative ob-
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servations of the data. Fortunately, the covariance criteria, with its ability to test how well a model captures
the key dynamics of each species, offers a promising avenue to pinpoint the specific evolutionary processes
at play.
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Figure 4. Dissecting ecological and evolutionary processes. We apply the covariance criteria to study how rapid
evolution affects population dynamics in predator-prey systems. Inspired by previous analyses, we evaluate the
Lotka-Volterra (LV) model with self-regulating prey. Rows represent either prey (blue) or predator (orange) dynamics.
Columns differentiate between datasets with (right panels; 13 datasets) or without (left panels; 18 datasets) evidence of
rapid evolution. Each panel compares normalized covariances between gain/loss rates and abundance (x and y-axis,
respectively), and the diagonal line denotes where the two covariances are equal. Each line represents the results of the
covariance criteria test applied to a specific dataset, using a different time window within that dataset. The transparency
of the line indicates the size of the time window used: less transparent lines signify larger time windows, while a dot
represents the analysis using the full time range of the dataset. We find that, without rapid evolution (left panels), the LV
model effectively describes both prey and predator dynamics across ecosystems. In contrast, with rapid evolution (right
panels), the LV model remains suitable for prey dynamics but not for predator dynamics. See Figure S4 for further
statistical details. These results guide how to incorporate rapid evolution in modeling prey-predator dynamics.

To examine how evolution shapes the dynamics of predator and prey, we must first establish a baseline:
how do prey-predator dynamics appear without rapid evolution? Building on our earlier finding (Figure 3),
we propose the LV model with self-regulation for the prey and without self-regulation for the predator as a
candidate. To test this model’s validity, we analyzed 18 time series across diverse ecosystems where rapid
evolution is not thought to be operating in a major way (Utida, 1957; Huffaker et al., 1958; Barnet, Daft, and
Stewart, 1981; Dulos andMarchand, 1984; Luckinbill, 1973; Luckinbill, 1974; Veilleux, 1976; Blasius, Rudolf, et
al., 2020), compiled and processed by Hiltunen et al. (2014) except for Blasius, Rudolf, et al. (2020) (Figure S3).
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Applying the covariance criteria to these datasets, we find that the proposed form of the LV model generally
describes both prey and predator dynamics well in the absence of rapid evolution (Figure 4A-B, statistical
analysis in Figure S4).

With a reliable “no evolution” baseline model in hand, we can now ask: how does rapid evolution reshape
the covariance structure of the system—in the prey, the predator, or both? To address this question, we
analyzed 13 prey-predator time series where rapid evolution is empirically observed (Utida, 1957; Tsuchiya
et al., 1972; Jost et al., 1973; Canale et al., 1973; Van den Ende, 1973; Veilleux, 1976; Boraas, 1980; Bohannan
and Lenski, 1997; Yoshida, Jones, et al., 2003; Yoshida, Ellner, et al., 2007). These datasets, compiled and
processed byHiltunen et al. (2014), encompass a diverse range of ecosystems, providing an ideal testbed. The
covariance criteria reveal a striking pattern: Predator species exhibit significant deviations from the baseline
LV model (with no rapid evolution), suggesting the LV model no longer holds (Figure 4D and Figure S4). In
contrast, prey species continue to adhere to the LV model’s predictions (Figure 4C and Figure S4).

These findings suggest that incorporating rapid evolution might require modifications to the predator
component of the LV model, but likely not the prey component. A caveat, though, is that we cannot pin-
point specific evolutionary mechanisms as we have exclusively focused on phenomenological models. It
is possible that evolution occurs in the predator’s capture-related traits and/or the prey’s defensive traits,
but phenomenologically, only the predator seems to respond to these evolutionary changes in one or both
species. Another caveat is that prey species may have different intrinsic gain rates with or without rapid evo-
lution. Due to the non-parametric nature of the covariance criteria test, we cannot detect these potential
differences because they share the same model structure. Despite these limitations, our findings provide
guidance for selecting current eco-evolutionary models and catalyzing the development of new ones.

3.3 Detecting signals of higher-order interactions
Higher-order interactions (HOIs), where a third species modifies interactions between a pair, have long fas-
cinated ecologists (Vandermeer, 1969; Case and Bender, 1981). Yet, detecting their existence remains chal-
lenging. Experimental manipulations, while ideal, are often logistically difficult (Mickalide and Kuehn, 2019;
Barbosa, Fernandes, and Morris, 2023). A common alternative is to infer HOIs through model fitting (May-
field and Stouffer, 2017; Li et al., 2021; Lai et al., 2022). However, since HOIs introduce more parameters,
models can overfit the data, giving the illusion of HOIs where none exist (Dyson et al., 2004; Mayer, Khairy,
and Howard, 2010). While regularizationmethods and information criteria canmitigate this issue (Tredennick
et al., 2021; Aho, Derryberry, and Peterson, 2014), biases may still persist.

In contrast, the covariance criteria offer a compelling alternative for detecting potential HOIs, as they are
inherently less susceptible to overfitting. Specifically, HOIs, when encoded in a model, change the predicted
covariance structure. If that model was applied to a dataset with no true HOIs, a mismatch between the
model’s predictions and the observed data would emerge. To demonstrate this, we analyze a high-quality,
long-term dataset of a rocky intertidal community in Goat Island Bay, New Zealand (Benincà et al., 2015). This
dataset tracks the monthly percent cover of barnacles, mussels, and algae for over 20 years. Benincà et al.
(2015) proposed a model without HOIs for mussel dynamics:

d 𝑀

d𝑡
= 𝑟( 𝐴 + 𝐵 ) 𝑀 − 𝑧 𝐹 (𝑡) 𝑀 (8)

Mussel

BarnacleCrustose algae Seasonality effect = 1 + 𝛼
(

𝑇max − 𝑇mean
)

cos
(

2𝜋(𝑡−32)
365

)

where𝑀 is the cover of mussels, 𝐵 is the cover of barnacles, 𝐴 is the cover of crustose algae, 𝑟 is the rate at
which area covered by those two species is colonized bymussels, 𝑧 is the constant death rate of mussels, and
𝐹 (𝑡) represents the effects of seasonality, which is a complex function of abiotic factors.
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Despite the complexity of this model, it has a simple covariance structure

𝙲𝚘𝚟 (�𝑟(𝐴 + 𝐵)𝑀,𝑀)
⟨�𝑟(𝐴 + 𝐵)𝑀⟩⟨𝑀⟩

=
𝙲𝚘𝚟

(

�𝑧��𝐹 (𝑡)𝑀,𝑀
)

⟨�𝑧��𝐹 (𝑡)𝑀⟩⟨𝑀⟩

(9)

⟹
𝙲𝚘𝚟 ((𝐴 + 𝐵)𝑀,𝑀)
⟨(𝐴 + 𝐵)𝑀⟩⟨𝑀⟩

=
𝙲𝚘𝚟 (𝑀,𝑀)
⟨𝑀⟩⟨𝑀⟩

(10)

We can cancel the mussel colonization (𝑟) and death rate (𝑧) is because they are constant, and can cancel the
effects of seasonality 𝐹 (𝑡) because 𝐹 (𝑡) is independent of the fluctuations of mussels 𝑀 (p value = 0.72 with
nonlinear correlation test in Chatterjee (2021)).

Additionally, we considered two further models. One model assumes mussel growth depends only on a
HOI—the interactive effect of algae and barnacles on mussel colonization:

d𝑀
d𝑡

= 𝑟 𝐴𝐵𝑀 − 𝑧𝐹 (𝑡)𝑀, (11)

Higher order only

and the other model combines the pairwise and higher order interactions:

d𝑀
d𝑡

= 𝑟 (𝐴 + 𝐵 + 𝐴𝐵)𝑀 − 𝑧𝐹 (𝑡)𝑀 (12)
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Figure 5. Detecting signals of higher-order interactions. We apply the covariance criteria to study the presence of
higher-order interactions in a rocky intertidal community (Benincà et al., 2015). Specifically, whether crustose algae and
barnacles interact with mussels exclusively through pairwise interactions or whether a higher-order interaction is
present. Three models are evaluated: pairwise interactions only (orange), higher-order interaction only (purple), and a
combination of both (blue). The x-axis represents the covariance between abundance and gain rates, while the y-axis
represents the covariance between abundance and loss rates. Points are derived from 1000 bootstrapping replicates.
The higher-order only model (purple) shows a significant mismatch in covariance values, indicating its inadequacy. The
pairwise interaction model (orange) aligns more closely but still deviates statistically from the observed loss covariance.
In contrast, the model incorporating both pairwise and higher-order interactions (blue) accurately captures the loss
covariance. Figure S6 shows further statistical analysis. These findings strongly suggest that both pairwise and
higher-order interactions between crustose algae, barnacles, and mussels play a significant role in influencing mussel
dynamics within this community.
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We then test the covariance structure from all three models above (Eqns. 8, 11, and 12) against the empir-
ical data (Figure 5). We find that the HOI-only model (Eqn. 11) fails the test entirely (z-score = 6.17, gain rate
covariance with density is quite different from the loss rate covariance). In contrast, the pairwise only model
(Eqn. 8) shows similar covariances for the gain and loss rates (z-score = 1.75). The pairwise + higher-order
interaction model (Eqn. 12) almost perfectly explains the data (z-score = 0.09), suggesting the presence of
HOIs within this system.

4 Discussion
We introduce the covariance criteria as a powerful, assumption-light framework for validating ecological mod-
els against time series data. The key insight is that every dynamical model imposes unique constraints on the
permissible covariance structures relating population abundances, gain rates, and loss rates. If the empiri-
cal data satisfy these constraints, we can be confident the model provides a useful approximation capturing
core aspects of the system’s dynamics. Conversely, violations of the covariance criteria provide quantitative
evidence that the model is fundamentally inadequate, at least for the particular species and conditions ex-
amined.

Theoretically, the covariance criteria exhibit remarkable generality, applying across ecological dynamics
ranging from simple equilibria to complex non-equilibrium systems with non-Markovian delays and external
stochastic forcing. Computationally, the criteria are efficient to evaluate andoften operate non-parametrically,
eliminating the need to specify all model parameters from data. Perhaps most crucially from an empirical
standpoint, the covariance criteria can be readily applied to the limited and noisy time series data common
in ecological studies. As demonstrated through our three case studies, this approach consistently supports
ecological models aligning with prevailing ecological understanding, while decisively rejecting those failing to
capture underlying dynamics. In an era of rapidly accumulating high-quality ecological data, this approach
subjects theorists’ ideas to rigorous scrutiny, and facilitates a better dialogue between ecological theory and
empirical reality.

Theoretical ecologists have often been criticized for validating models with a low bar for consistency with
data (Rykiel Jr, 1996; Bascompte, Jordano, and Olesen, 2006; Holland, Okuyama, and DeAngelis, 2006). The
low validation bar allows a multiplicity of models to appear acceptable, even when their predicted mecha-
nisms are vastly different, leading to insufficient confidence in any particular model. However, this raises a
question: if we set a more rigorous quantitative bar, would all ecological models fail? This concern may ex-
plain the limited attention the covariance criteria has received beyond its originators (Joly-Smith, Wang, and
Hilfinger, 2021; Wittenstein, Leibovich, and Hilfinger, 2022; Joly-Smith, Talpur, et al., 2023). After all, as Robert
May wrote, “the models of biological communities tend rather to be of a very general, strategic kind” (May,
2002). We initially expected most ecological models to struggle to meet the strict covariance criteria. Much to
our surprise, however, we found that the classic Lotka-Volterra model withstood the test across a wide range
of consumer-resource systems. This stands in direct contrast to the common perception, echoed in many
introductory ecology texts (Morin, 2009; Mittelbach and McGill, 2019), that the LV model is overly simplistic
and misses crucial biological details. Our findings could help explain the recent success of the LV model in
predicting some ecological patterns (Barbier et al., 2021; Hu et al., 2022; Père, Terenzi, and Werner, 2024).

The covariance criteria represents a fundamentally different approach to model validation than machine
learning methods like symbolic regression (Chen, Angulo, and Liu, 2019; Martin, Munch, and Hein, 2018;
Cardoso et al., 2020). Those machine learning techniques aim to directly distill mathematical models from
patterns in empirical data, with minimal a priori knowledge of the system. In contrast, the covariance crite-
ria retains theory-based model building at its core, as it begins with a theorist-proposed dynamical model
inspired by natural history. Importantly, covariance criteria and machine learning approaches can work to-
gether. For example, they could be combined into a synergistic modeling pipeline where machine learning
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suggests new model structures, theorists use their expertise to explain the mechanisms, and the covariance
criteria rigorously tests the resulting models against new data.

The covariance criteria could be useful for evaluating more than just population dynamics over time, as
we focussed on here. For example, the criteria could be used to test models for how population abundances
vary over space, analogous to common ecological approaches of substituting space for time when aiming to
understand long term dynamics (Pickett, 1989; Wogan and Wang, 2018). However, doing so would require
making additional assumptions about how model parameters vary across locations. Future work could also
adapt the criteria to model the dynamics of other types of empirical data, such as temporal changes in trait
values or single nucleotide polymorphisms.

Despite its advantages, the covariance criteria have limitations. It is most effective when a species has
only few direct interactions with other species. This is because the criteria partitions the model into gain and
loss components without dissecting their underlying process in any detail. When species interact directly with
many rather than a few species, the gain and loss terms can become highly complex, potentially requiring the
estimation of additional parameters. This increased parameterization makes the analysis more complex and
diminishes the advantage of the covariance criteria being non-parametric in simpler cases. In practice, how-
ever, this may not be a major limitation because, outside of microbiome data analyzed with high-throughput
sequencing, few long-term time series include a large number of interacting species.

As ecology grapples with increasingly complex challenges, from climate change to biodiversity loss, the
need for reliable models has never been greater. The covariance criteria approach offers a path toward
greater confidence in our ecological understanding by rigorously testing models across a wide range of prob-
lems. The approach could help validate models of species range shifts under climate change, or models
of food web robustness to species invasions and extinctions. By providing a more rigorous foundation for
model validation, we hope this method can contribute to more accurate predictions of ecosystem responses
to environmental perturbations and more effective conservation strategies.

Data availability: Empirical data of aquatic invertebrate and the green algae is available from doi.org/10.
1038/s41586-019-1857-0. Empirical dataset of consumer-resource dynamics is available from doi.org/10.1111/
ele.12291. The R package ecoModelOracle to run the analysis is available on GitHub at github.com/clsong/
ecoModelOracle.
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