






servations of the data. Fortunately, the covariance criteria, with its ability to test how well a model captures
the key dynamics of each species, offers a promising avenue to pinpoint the specific evolutionary processes
at play.
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Figure 4. Dissecting ecological and evolutionary processes. We apply the covariance criteria to study how rapid
evolution affects population dynamics in predator-prey systems. Inspired by previous analyses, we evaluate the
Lotka-Volterra (LV) model with self-regulating prey. Rows represent either prey (blue) or predator (orange) dynamics.
Columns differentiate between datasets with (right panels; 13 datasets) or without (left panels; 18 datasets) evidence of
rapid evolution. Each panel compares normalized covariances between gain/loss rates and abundance (x and y-axis,
respectively), and the diagonal line denotes where the two covariances are equal. Each line represents the results of the
covariance criteria test applied to a specific dataset, using a different time window within that dataset. The transparency
of the line indicates the size of the time window used: less transparent lines signify larger time windows, while a dot
represents the analysis using the full time range of the dataset. We find that, without rapid evolution (left panels), the LV
model effectively describes both prey and predator dynamics across ecosystems. In contrast, with rapid evolution (right
panels), the LV model remains suitable for prey dynamics but not for predator dynamics. See Figure S4 for further
statistical details. These results guide how to incorporate rapid evolution in modeling prey-predator dynamics.

To examine how evolution shapes the dynamics of predator and prey, we must first establish a baseline:
how do prey-predator dynamics appear without rapid evolution? Building on our earlier finding (Figure 3),
we propose the LV model with self-regulation for the prey and without self-regulation for the predator as a
candidate. To test this model’s validity, we analyzed 18 time series across diverse ecosystems where rapid
evolution is not thought to be operating in a major way (Utida, 1957; Huffaker et al., 1958; Barnet, Daft, and
Stewart, 1981; Dulos andMarchand, 1984; Luckinbill, 1973; Luckinbill, 1974; Veilleux, 1976; Blasius, Rudolf, et
al., 2020), compiled and processed by Hiltunen et al. (2014) except for Blasius, Rudolf, et al. (2020) (Figure S3).
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Applying the covariance criteria to these datasets, we find that the proposed form of the LV model generally
describes both prey and predator dynamics well in the absence of rapid evolution (Figure 4A-B, statistical
analysis in Figure S4).

With a reliable “no evolution” baseline model in hand, we can now ask: how does rapid evolution reshape
the covariance structure of the system—in the prey, the predator, or both? To address this question, we
analyzed 13 prey-predator time series where rapid evolution is empirically observed (Utida, 1957; Tsuchiya
et al., 1972; Jost et al., 1973; Canale et al., 1973; Van den Ende, 1973; Veilleux, 1976; Boraas, 1980; Bohannan
and Lenski, 1997; Yoshida, Jones, et al., 2003; Yoshida, Ellner, et al., 2007). These datasets, compiled and
processed byHiltunen et al. (2014), encompass a diverse range of ecosystems, providing an ideal testbed. The
covariance criteria reveal a striking pattern: Predator species exhibit significant deviations from the baseline
LV model (with no rapid evolution), suggesting the LV model no longer holds (Figure 4D and Figure S4). In
contrast, prey species continue to adhere to the LV model’s predictions (Figure 4C and Figure S4).

These findings suggest that incorporating rapid evolution might require modifications to the predator
component of the LV model, but likely not the prey component. A caveat, though, is that we cannot pin-
point specific evolutionary mechanisms as we have exclusively focused on phenomenological models. It
is possible that evolution occurs in the predator’s capture-related traits and/or the prey’s defensive traits,
but phenomenologically, only the predator seems to respond to these evolutionary changes in one or both
species. Another caveat is that prey species may have different intrinsic gain rates with or without rapid evo-
lution. Due to the non-parametric nature of the covariance criteria test, we cannot detect these potential
differences because they share the same model structure. Despite these limitations, our findings provide
guidance for selecting current eco-evolutionary models and catalyzing the development of new ones.

3.3 Detecting signals of higher-order interactions
Higher-order interactions (HOIs), where a third species modifies interactions between a pair, have long fas-
cinated ecologists (Vandermeer, 1969; Case and Bender, 1981). Yet, detecting their existence remains chal-
lenging. Experimental manipulations, while ideal, are often logistically difficult (Mickalide and Kuehn, 2019;
Barbosa, Fernandes, and Morris, 2023). A common alternative is to infer HOIs through model fitting (May-
field and Stouffer, 2017; Li et al., 2021; Lai et al., 2022). However, since HOIs introduce more parameters,
models can overfit the data, giving the illusion of HOIs where none exist (Dyson et al., 2004; Mayer, Khairy,
and Howard, 2010). While regularizationmethods and information criteria canmitigate this issue (Tredennick
et al., 2021; Aho, Derryberry, and Peterson, 2014), biases may still persist.

In contrast, the covariance criteria offer a compelling alternative for detecting potential HOIs, as they are
inherently less susceptible to overfitting. Specifically, HOIs, when encoded in a model, change the predicted
covariance structure. If that model was applied to a dataset with no true HOIs, a mismatch between the
model’s predictions and the observed data would emerge. To demonstrate this, we analyze a high-quality,
long-term dataset of a rocky intertidal community in Goat Island Bay, New Zealand (Benincà et al., 2015). This
dataset tracks the monthly percent cover of barnacles, mussels, and algae for over 20 years. Benincà et al.
(2015) proposed a model without HOIs for mussel dynamics:

d 𝑀

d𝑡
= 𝑟( 𝐴 + 𝐵 ) 𝑀 − 𝑧 𝐹 (𝑡) 𝑀 (8)

Mussel

BarnacleCrustose algae Seasonality effect = 1 + 𝛼
(

𝑇max − 𝑇mean
)

cos
(

2𝜋(𝑡−32)
365

)

where𝑀 is the cover of mussels, 𝐵 is the cover of barnacles, 𝐴 is the cover of crustose algae, 𝑟 is the rate at
which area covered by those two species is colonized bymussels, 𝑧 is the constant death rate of mussels, and
𝐹 (𝑡) represents the effects of seasonality, which is a complex function of abiotic factors.
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Despite the complexity of this model, it has a simple covariance structure

𝙲𝚘𝚟 (�𝑟(𝐴 + 𝐵)𝑀,𝑀)
⟨�𝑟(𝐴 + 𝐵)𝑀⟩⟨𝑀⟩

=
𝙲𝚘𝚟

(

�𝑧��𝐹 (𝑡)𝑀,𝑀
)

⟨�𝑧��𝐹 (𝑡)𝑀⟩⟨𝑀⟩

(9)

⟹
𝙲𝚘𝚟 ((𝐴 + 𝐵)𝑀,𝑀)
⟨(𝐴 + 𝐵)𝑀⟩⟨𝑀⟩

=
𝙲𝚘𝚟 (𝑀,𝑀)
⟨𝑀⟩⟨𝑀⟩

(10)

We can cancel the mussel colonization (𝑟) and death rate (𝑧) is because they are constant, and can cancel the
effects of seasonality 𝐹 (𝑡) because 𝐹 (𝑡) is independent of the fluctuations of mussels 𝑀 (p value = 0.72 with
nonlinear correlation test in Chatterjee (2021)).

Additionally, we considered two further models. One model assumes mussel growth depends only on a
HOI—the interactive effect of algae and barnacles on mussel colonization:

d𝑀
d𝑡

= 𝑟 𝐴𝐵𝑀 − 𝑧𝐹 (𝑡)𝑀, (11)

Higher order only

and the other model combines the pairwise and higher order interactions:

d𝑀
d𝑡

= 𝑟 (𝐴 + 𝐵 + 𝐴𝐵)𝑀 − 𝑧𝐹 (𝑡)𝑀 (12)
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Figure 5. Detecting signals of higher-order interactions. We apply the covariance criteria to study the presence of
higher-order interactions in a rocky intertidal community (Benincà et al., 2015). Specifically, whether crustose algae and
barnacles interact with mussels exclusively through pairwise interactions or whether a higher-order interaction is
present. Three models are evaluated: pairwise interactions only (orange), higher-order interaction only (purple), and a
combination of both (blue). The x-axis represents the covariance between abundance and gain rates, while the y-axis
represents the covariance between abundance and loss rates. Points are derived from 1000 bootstrapping replicates.
The higher-order only model (purple) shows a significant mismatch in covariance values, indicating its inadequacy. The
pairwise interaction model (orange) aligns more closely but still deviates statistically from the observed loss covariance.
In contrast, the model incorporating both pairwise and higher-order interactions (blue) accurately captures the loss
covariance. Figure S6 shows further statistical analysis. These findings strongly suggest that both pairwise and
higher-order interactions between crustose algae, barnacles, and mussels play a significant role in influencing mussel
dynamics within this community.
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We then test the covariance structure from all three models above (Eqns. 8, 11, and 12) against the empir-
ical data (Figure 5). We find that the HOI-only model (Eqn. 11) fails the test entirely (z-score = 6.17, gain rate
covariance with density is quite different from the loss rate covariance). In contrast, the pairwise only model
(Eqn. 8) shows similar covariances for the gain and loss rates (z-score = 1.75). The pairwise + higher-order
interaction model (Eqn. 12) almost perfectly explains the data (z-score = 0.09), suggesting the presence of
HOIs within this system.

4 Discussion
We introduce the covariance criteria as a powerful, assumption-light framework for validating ecological mod-
els against time series data. The key insight is that every dynamical model imposes unique constraints on the
permissible covariance structures relating population abundances, gain rates, and loss rates. If the empiri-
cal data satisfy these constraints, we can be confident the model provides a useful approximation capturing
core aspects of the system’s dynamics. Conversely, violations of the covariance criteria provide quantitative
evidence that the model is fundamentally inadequate, at least for the particular species and conditions ex-
amined.

Theoretically, the covariance criteria exhibit remarkable generality, applying across ecological dynamics
ranging from simple equilibria to complex non-equilibrium systems with non-Markovian delays and external
stochastic forcing. Computationally, the criteria are efficient to evaluate andoften operate non-parametrically,
eliminating the need to specify all model parameters from data. Perhaps most crucially from an empirical
standpoint, the covariance criteria can be readily applied to the limited and noisy time series data common
in ecological studies. As demonstrated through our three case studies, this approach consistently supports
ecological models aligning with prevailing ecological understanding, while decisively rejecting those failing to
capture underlying dynamics. In an era of rapidly accumulating high-quality ecological data, this approach
subjects theorists’ ideas to rigorous scrutiny, and facilitates a better dialogue between ecological theory and
empirical reality.

Theoretical ecologists have often been criticized for validating models with a low bar for consistency with
data (Rykiel Jr, 1996; Bascompte, Jordano, and Olesen, 2006; Holland, Okuyama, and DeAngelis, 2006). The
low validation bar allows a multiplicity of models to appear acceptable, even when their predicted mecha-
nisms are vastly different, leading to insufficient confidence in any particular model. However, this raises a
question: if we set a more rigorous quantitative bar, would all ecological models fail? This concern may ex-
plain the limited attention the covariance criteria has received beyond its originators (Joly-Smith, Wang, and
Hilfinger, 2021; Wittenstein, Leibovich, and Hilfinger, 2022; Joly-Smith, Talpur, et al., 2023). After all, as Robert
May wrote, “the models of biological communities tend rather to be of a very general, strategic kind” (May,
2002). We initially expected most ecological models to struggle to meet the strict covariance criteria. Much to
our surprise, however, we found that the classic Lotka-Volterra model withstood the test across a wide range
of consumer-resource systems. This stands in direct contrast to the common perception, echoed in many
introductory ecology texts (Morin, 2009; Mittelbach and McGill, 2019), that the LV model is overly simplistic
and misses crucial biological details. Our findings could help explain the recent success of the LV model in
predicting some ecological patterns (Barbier et al., 2021; Hu et al., 2022; Père, Terenzi, and Werner, 2024).

The covariance criteria represents a fundamentally different approach to model validation than machine
learning methods like symbolic regression (Chen, Angulo, and Liu, 2019; Martin, Munch, and Hein, 2018;
Cardoso et al., 2020). Those machine learning techniques aim to directly distill mathematical models from
patterns in empirical data, with minimal a priori knowledge of the system. In contrast, the covariance crite-
ria retains theory-based model building at its core, as it begins with a theorist-proposed dynamical model
inspired by natural history. Importantly, covariance criteria and machine learning approaches can work to-
gether. For example, they could be combined into a synergistic modeling pipeline where machine learning
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suggests new model structures, theorists use their expertise to explain the mechanisms, and the covariance
criteria rigorously tests the resulting models against new data.

The covariance criteria could be useful for evaluating more than just population dynamics over time, as
we focussed on here. For example, the criteria could be used to test models for how population abundances
vary over space, analogous to common ecological approaches of substituting space for time when aiming to
understand long term dynamics (Pickett, 1989; Wogan and Wang, 2018). However, doing so would require
making additional assumptions about how model parameters vary across locations. Future work could also
adapt the criteria to model the dynamics of other types of empirical data, such as temporal changes in trait
values or single nucleotide polymorphisms.

Despite its advantages, the covariance criteria have limitations. It is most effective when a species has
only few direct interactions with other species. This is because the criteria partitions the model into gain and
loss components without dissecting their underlying process in any detail. When species interact directly with
many rather than a few species, the gain and loss terms can become highly complex, potentially requiring the
estimation of additional parameters. This increased parameterization makes the analysis more complex and
diminishes the advantage of the covariance criteria being non-parametric in simpler cases. In practice, how-
ever, this may not be a major limitation because, outside of microbiome data analyzed with high-throughput
sequencing, few long-term time series include a large number of interacting species.

As ecology grapples with increasingly complex challenges, from climate change to biodiversity loss, the
need for reliable models has never been greater. The covariance criteria approach offers a path toward
greater confidence in our ecological understanding by rigorously testing models across a wide range of prob-
lems. The approach could help validate models of species range shifts under climate change, or models
of food web robustness to species invasions and extinctions. By providing a more rigorous foundation for
model validation, we hope this method can contribute to more accurate predictions of ecosystem responses
to environmental perturbations and more effective conservation strategies.

Data availability: Empirical data of aquatic invertebrate and the green algae is available from doi.org/10.
1038/s41586-019-1857-0. Empirical dataset of consumer-resource dynamics is available from doi.org/10.1111/
ele.12291. The R package ecoModelOracle to run the analysis is available on GitHub at github.com/clsong/
ecoModelOracle.

References
Abrams, Peter A (1992). “Adaptive foraging by predators as a cause of predator-prey cycles”. In: Evolutionary

Ecology 6, pp. 56–72.
— (1997). “Prey evolution as a cause of predator-prey cycles”. In: Evolution 51, pp. 1740–1748.
— (2000). “The evolution of predator-prey interactions: theory and evidence”. In: Annual Review of Ecology and

Systematics, pp. 79–105.
— (2015). “Why ratio dependence is (still) a bad model of predation”. In: Biological Reviews 90.3, pp. 794–814.
Abrams, Peter A and Lev R Ginzburg (2000). “The nature of predation: prey dependent, ratio dependent or

neither?” In: Trends in Ecology & Evolution 15.8, pp. 337–341.
Aho, Ken, DeWayne Derryberry, and Teri Peterson (2014). “Model selection for ecologists: the worldviews of

AIC and BIC”. In: Ecology 95.3, pp. 631–636.
Akcakaya, H Resit, Roger Arditi, and Lev R Ginzburg (1995). “Ratio-dependent predation: an abstraction that

works”. In: Ecology 76.3, pp. 995–1004.
Arditi, Roger and Lev R Ginzburg (1989). “Coupling in predator-prey dynamics: ratio-dependence”. In: Journal

of Theoretical Biology 139.3, pp. 311–326.
— (2012). How species interact: altering the standard view on trophic ecology. Oxford University Press.

Song & Levine 2024 | Rigorous (in)validation of ecological models bioR𝜒 iv | 14 of 18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.19.613075doi: bioRxiv preprint 

doi.org/10.1038/s41586-019-1857-0
doi.org/10.1038/s41586-019-1857-0
doi.org/10.1111/ele.12291
doi.org/10.1111/ele.12291
github.com/clsong/ecoModelOracle
github.com/clsong/ecoModelOracle
https://doi.org/10.1101/2024.09.19.613075
http://creativecommons.org/licenses/by/4.0/


Barbier,Matthieu, ClaireDeMazancourt,Michel Loreau, andGuyBunin (2021). “Fingerprints of high-dimensional
coexistence in complex ecosystems”. In: Physical Review X 11.1, p. 011009.

Barbosa, Milton, Geraldo Wilson Fernandes, and Rebecca Jane Morris (2023). “Experimental evidence for a
hidden network of higher-order interactions in a diverse arthropod community”. In: Current Biology 33.2,
pp. 381–388.

Barnet, Yvonne M, MJ Daft, and WDP Stewart (1981). “Cyanobacteria-cyanophage interactions in continuous
culture”. In: Journal of Applied Bacteriology 51.3, pp. 541–552.

Bascompte, Jordi, Pedro Jordano, and Jens M Olesen (2006). “Response to Comment on" Asymmetric Coevo-
lutionary Networks Facilitate Biodiversity Maintenance"”. In: Science 313.5795, pp. 1887–1887.

Benincà, Elisa, Bill Ballantine, Stephen P Ellner, and Jef Huisman (2015). “Species fluctuations sustained by a
cyclic succession at the edge of chaos”. In: Proceedings of the National Academy of Sciences 112.20, pp. 6389–
6394.

Blasius, Bernd, Amit Huppert, and Lewi Stone (1999). “Complex dynamics and phase synchronization in spa-
tially extended ecological systems”. In: Nature 399.6734, pp. 354–359.

Blasius, Bernd, Lars Rudolf, Guntram Weithoff, Ursula Gaedke, and Gregor F Fussmann (2020). “Long-term
cyclic persistence in an experimental predator–prey system”. In: Nature 577.7789, pp. 226–230.

Bohannan, Brendan JM and Richard E Lenski (1997). “Effect of resource enrichment on a chemostat commu-
nity of bacteria and bacteriophage”. In: Ecology 78.8, pp. 2303–2315.

Boraas, Martin E (1980). “A chemostat system for the study of rotifer-algal-nitrate interactions”. In: Evolution
and ecology of zooplankton communities.

Canale, RaymondP, TD Lustig, PMpKehrberger, and JE Salo (1973). “Experimental andmathematicalmodeling
studies of protozoan predation on bacteria”. In: Biotechnology and Bioengineering 15.4, pp. 707–728.

Cardoso, Pedro, Vasco V Branco, Paulo AV Borges, José C Carvalho, François Rigal, Rosalina Gabriel, Stefano
Mammola, José Cascalho, and Luıés Correia (2020). “Automated discovery of relationships, models, and
principles in ecology”. In: Frontiers in Ecology and Evolution 8, p. 530135.

Case, Ted J and Edward A Bender (1981). “Testing for higher order interactions”. In: The American Naturalist
118.6, pp. 920–929.

Chatterjee, Sourav (2021). “A new coefficient of correlation”. In: Journal of the American Statistical Association
116.536, pp. 2009–2022.

Chen, Yize, Marco Tulio Angulo, and Yang-Yu Liu (2019). “Revealing complex ecological dynamics via symbolic
regression”. In: BioEssays 41.12, p. 1900069.

Chesson, Peter (2012). “Species competition and predation”. In: Ecological systems: selected entries from the
encyclopedia of sustainability science and technology. Springer, pp. 223–256.

Cortez, Michael H and Joshua S Weitz (2014). “Coevolution can reverse predator–prey cycles”. In: Proceedings
of the National Academy of Sciences 111.20, pp. 7486–7491.

Dieckmann, Ulf and Richard Law (1996). “The dynamical theory of coevolution: a derivation from stochastic
ecological processes”. In: Journal of Mathematical Biology 34, pp. 579–612.

Dulos, E andAMarchand (1984). “Oscillations of the population densities of the bacterial prey-predator couple
Escherichia coli-Bdellovibrio bacteriovorus: experimental study and theoretical model”. In: Annals of the
Institut Pasteur/Microbiology. Vol. 135. Elsevier, pp. 271–293.

Dyson, Freeman et al. (2004). “A meeting with Enrico Fermi”. In: Nature 427.6972, pp. 297–297.
Gavrilets, Sergey (1997). “Coevolutionary chase in exploiter–victim systemswith polygenic characters”. In: Jour-

nal of Theoretical Biology 186.4, pp. 527–534.
Gilpin, Michael E (1973). “Do hares eat lynx?” In: The American Naturalist 107.957, pp. 727–730.
Ginzburg, Lev and John Damuth (2022). “The Issue Isn’t Which Model of Consumer Interference Is Right, but

Which One Is Least Wrong”. In: Frontiers in Ecology and Evolution 10.

Song & Levine 2024 | Rigorous (in)validation of ecological models bioR𝜒 iv | 15 of 18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.19.613075doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613075
http://creativecommons.org/licenses/by/4.0/


Grainger, Tess N, Athmanathan Senthilnathan, Po-Ju Ke, Matthew A Barbour, Natalie T Jones, John P DeLong,
Sarah P Otto, Mary I O’connor, Kyle E Coblentz, Nikunj Goel, et al. (2022). “An empiricist’s guide to using
ecological theory”. In: The American Naturalist 199.1, pp. 1–20.

Gurney, WSC and RM Nisbet (1978). “Single-species population fluctuations in patchy environments”. In: The
American Naturalist 112.988, pp. 1075–1090.

Hilfinger, Andreas, Thomas M Norman, and Johan Paulsson (2016). “Exploiting natural fluctuations to identify
kinetic mechanisms in sparsely characterized systems”. In: Cell Systems 2.4, pp. 251–259.

Hilfinger, Andreas, Thomas M Norman, Glenn Vinnicombe, and Johan Paulsson (2016). “Constraints on fluc-
tuations in sparsely characterized biological systems”. In: Physical Review Letters 116.5, p. 058101.

Hiltunen, Teppo, Nelson G Hairston Jr, Giles Hooker, Laura E Jones, and Stephen P Ellner (2014). “A newly
discovered role of evolution in previously published consumer–resource dynamics”. In: Ecology Letters 17.8,
pp. 915–923.

Holland, J Nathaniel, Toshinori Okuyama, and Donald L DeAngelis (2006). “Comment on" Asymmetric coevo-
lutionary networks facilitate biodiversity maintenance"”. In: Science 313.5795, pp. 1887–1887.

Hone, Jim, Charles J Krebs, and Mark O’Donoghue (2011). “Is the relationship between predator and prey
abundances related to climate for lynx and snowshoe hares?” In: Wildlife Research 38.5, pp. 419–425.

Hu, Jiliang, Daniel R Amor, Matthieu Barbier, Guy Bunin, and Jeff Gore (2022). “Emergent phases of ecological
diversity and dynamics mapped in microcosms”. In: Science 378.6615, pp. 85–89.

Huffaker, Carl et al. (1958). “Experimental studies on predation: dispersion factors and predator-prey oscilla-
tions”. In: Hilgardia 27.14, pp. 343–383.

Joly-Smith, Euan, Mir Mikdad Talpur, Paige Allard, Fotini Papazotos, Laurent Potvin-Trottier, and Andreas Hil-
finger (2023). “Exploiting fluctuations in gene expression to detect causal interactions between genes”. In:
bioRxiv, pp. 2023–09.

Joly-Smith, Euan, Zitong Jerry Wang, and Andreas Hilfinger (2021). “Inferring gene regulation dynamics from
static snapshots of gene expression variability”. In: Physical Review E 104.4, p. 044406.

Jost, JL, JF Drake, AG Fredrickson, andHMTsuchiya (1973). “Interactions of Tetrahymenapyriformis, Escherichia
coli, Azotobacter vinelandii, and glucose in a minimal medium”. In: Journal of Bacteriology 113.2, pp. 834–
840.

King, Aaron A and William M Schaffer (2001). “The geometry of a population cycle: a mechanistic model of
snowshoe hare demography”. In: Ecology 82.3, pp. 814–830.

Kingsland, S.E. (1991). “Defining Ecology as a Science”. In: Foundations of Ecology: Classic Papers with Commen-
taries. Ed. by L.A. Real and J.H. Brown. Chicago: The University of Chicago Press, pp. 1–13.

Lai, Hao Ran, Kwek Yan Chong, Alex Thiam Koon Yee, Margaret M Mayfield, and Daniel B Stouffer (2022).
“Non-additive biotic interactions improve predictions of tropical tree growth and impact community size
structure”. In: Ecology 103.2, e03588.

Leigh, E. (1968). “The ecological role of Volterra’s equations”. In: Some mathematical problems in biology. Ed. by
M. Gerstenhaber. Providence: American Mathematical Society, pp. 1–61.

Li, Yuanzhi, Margaret M Mayfield, Bin Wang, Junli Xiao, Kamil Kral, David Janik, Jan Holik, and Chengjin Chu
(2021). “Beyond direct neighbourhood effects: higher-order interactions improvemodelling and predicting
tree survival and growth”. In: National Science Review 8.5, nwaa244.

Little, John DC (1961). “A proof for the queuing formula: L= 𝜆W”. In: Operations Research 9.3, pp. 383–387.
— (2011). “Little’s Law as viewed on its 50th anniversary”. In: Operations Research 59.3, pp. 536–549.
Loreau, Michel, Philippe Jarne, and Jennifer BH Martiny (2023). “Opportunities to advance the synthesis of

ecology and evolution”. In: Ecology Letters 26, S11–S15.
Luckinbill, Leo S (1973). “Coexistence in laboratory populations of Paramecium aurelia and its predator Di-

dinium nasutum”. In: Ecology 54.6, pp. 1320–1327.

Song & Levine 2024 | Rigorous (in)validation of ecological models bioR𝜒 iv | 16 of 18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.19.613075doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613075
http://creativecommons.org/licenses/by/4.0/


Luckinbill, Leo S (1974). “The effects of space and enrichment on a predator-prey system”. In: Ecology 55.5,
pp. 1142–1147.

Marrow, Paul, Richard Law, and C Cannings (1992). “The coevolution of predator—prey interactions: ESSs and
Red Queen dynamics”. In: Proceedings of the Royal Society of London. Series B: Biological Sciences 250.1328,
pp. 133–141.

Martin, Benjamin T, Stephan B Munch, and Andrew M Hein (2018). “Reverse-engineering ecological theory
from data”. In: Proceedings of the Royal Society B: Biological Sciences 285.1878, p. 20180422.

May, Robert M (2002). “The Best Possible Time to be Alive”. In: It must be beautiful: Great equations of modern
science. Ed. by Graham Farmelo. Granta Books, London, pp. 212–229.

Mayer, Jürgen, Khaled Khairy, and Jonathon Howard (2010). “Drawing an elephant with four complex param-
eters”. In: American Journal of Physics 78.6, pp. 648–649.

Mayfield, Margaret M and Daniel B Stouffer (2017). “Higher-order interactions capture unexplained complex-
ity in diverse communities”. In: Nature Ecology & Evolution 1.3, p. 0062.

Mickalide, Harry and Seppe Kuehn (2019). “Higher-order interaction between species inhibits bacterial inva-
sion of a phototroph-predator microbial community”. In: Cell Systems 9.6, pp. 521–533.

Mittelbach, Gary G and Brian J McGill (2019). Community Ecology. Oxford University Press.
Morin, Peter J (2009). Community Ecology. John Wiley & Sons.
Murdoch, WilliamW, Cheryl J Briggs, and Roger MNisbet (2013). Consumer-resource dynamics (MPB-36). Prince-

ton University Press.
Nisbet, Roger M and William Gurney (2003). Modelling fluctuating populations: reprint of first Edition (1982).

Blackburn Press.
Novak, Mark and Daniel B Stouffer (2021). “Geometric complexity and the information-theoretic comparison

of functional-response models”. In: Frontiers in Ecology and Evolution 9, p. 740362.
Père, Nathaniel Mon, Francesco Terenzi, and Benjamin Werner (2024). “The dynamic fitness landscape of

ageing haematopoiesis through clonal competition”. In: bioRxiv.
Pickett, Steward TA (1989). “Space-for-time substitution as an alternative to long-term studies”. In: Long-term

studies in ecology: approaches and alternatives. Springer, pp. 110–135.
Pimm, SL and JH Lawton (1977). “Number of trophic levels in ecological communities”. In: Nature 268.5618,

pp. 329–331.
Pringle, Robert M, Tyler R Kartzinel, Todd M Palmer, Timothy J Thurman, Kena Fox-Dobbs, Charles CY Xu,

Matthew C Hutchinson, Tyler C Coverdale, Joshua H Daskin, Dominic A Evangelista, et al. (2019). “Predator-
induced collapse of niche structure and species coexistence”. In: Nature 570.7759, pp. 58–64.

Rosenzweig, M. L. and R. H. MacArthur (1963). “Graphical Representation and Stability Conditions of Predator-
Prey Interactions”. In: The American Naturalist 97.895, pp. 209–223.

Rykiel Jr, Edward J (1996). “Testing ecological models: the meaning of validation”. In: Ecological modelling 90.3,
pp. 229–244.

Schoener, Thomas W (2011). “The newest synthesis: understanding the interplay of evolutionary and ecolog-
ical dynamics”. In: Science 331.6016, pp. 426–429.

Song, Chuliang and Serguei Saavedra (2021). “Bridging parametric and nonparametric measures of species
interactions unveils new insights of non-equilibrium dynamics”. In: Oikos 130.7, pp. 1027–1034.

Stenseth, Nils Chr, Wilhelm Falck, Ottar N Bjørnstad, and Charles J Krebs (1997). “Population regulation in
snowshoe hare and Canadian lynx: asymmetric food web configurations between hare and lynx”. In: Pro-
ceedings of the National Academy of Sciences 94.10, pp. 5147–5152.

Tilman, David (1982). Resource competition and community structure. Princeton university press.
Tredennick, Andrew T, Giles Hooker, Stephen P Ellner, and Peter B Adler (2021). “A practical guide to selecting

models for exploration, inference, and prediction in ecology”. In: Ecology 102.6, e03336.

Song & Levine 2024 | Rigorous (in)validation of ecological models bioR𝜒 iv | 17 of 18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.19.613075doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.19.613075
http://creativecommons.org/licenses/by/4.0/


Tsuchiya, HM, JF Drake, JL Jost, and AG Fredrickson (1972). “Predator-prey interactions of Dictyostelium dis-
coideum and Escherichia coli in continuous culture”. In: Journal of Bacteriology 110.3, pp. 1147–1153.

Tyutyunov, Yu V and LI Titova (2020). “From Lotka–Volterra to Arditi–Ginzburg: 90 years of evolving trophic
functions”. In: Biology Bulletin Reviews 10.3, pp. 167–185.

Utida, Syunro (1957). “Population fluctuation, an experimental and theoretical approach”. In: Cold Spring Har-
bor Symposia on Quantitative Biology. Vol. 22. Cold Spring Harbor Laboratory Press, pp. 139–151.

Van den Ende, P (1973). “Predator-prey interactions in continuous culture”. In: Science 181.4099, pp. 562–564.
Vandermeer, John H (1969). “The competitive structure of communities: an experimental approach with pro-

tozoa”. In: Ecology 50.3, pp. 362–371.
Veilleux, B.G. (1976). “The analysis of a predatory interaction between Didinium and Paramecium”. MSc thesis.

University of Alberta, Canada.
Volterra, V. (1926). “Fluctuations in the Abundance of a Species considered Mathematically”. In: Nature 118,

pp. 558–560. URL: https://doi.org/10.1038/118558a0.
Wittenstein, Timon, Nava Leibovich, and Andreas Hilfinger (2022). “Quantifying biochemical reaction rates

from static population variability within incompletely observed complex networks”. In: PLOS Computational
Biology 18.6, e1010183.

Wogan, Guinevere OU and Ian J Wang (2018). “The value of space-for-time substitution for studying fine-scale
microevolutionary processes”. In: Ecography 41.9, pp. 1456–1468.

Yan, Chuan, Nils Chr Stenseth, Charles J Krebs, and Zhibin Zhang (2013). “Linking climate change to population
cycles of hares and lynx”. In: Global Change Biology 19.11, pp. 3263–3271.

Yoshida, Takehito, Stephen P Ellner, Laura E Jones, Brendan J M Bohannan, Richard E Lenski, and Nelson
G Hairston Jr (2007). “Cryptic population dynamics: rapid evolution masks trophic interactions”. In: PLoS
Biology 5.9, e235.

Yoshida, Takehito, Laura E Jones, Stephen P Ellner, Gregor F Fussmann, and Nelson G Hairston (2003). “Rapid
evolution drives ecological dynamics in a predator–prey system”. In: Nature 424.6946, pp. 303–306.

Song & Levine 2024 | Rigorous (in)validation of ecological models bioR𝜒 iv | 18 of 18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.19.613075doi: bioRxiv preprint 

https://doi.org/10.1038/118558a0
https://doi.org/10.1101/2024.09.19.613075
http://creativecommons.org/licenses/by/4.0/

