
RESEARCH ARTICLE ECOLOGY

Rapid monitoring of ecological persistence
Chuliang Songa,b,c,1,2 ID , Benno I. Simmonsd,1,2 , Marie-Josée Fortinb ID , Andrew Gonzaleza ID , Christopher N. Kaiser-Bunburyd ID , and Serguei Saavedrae,2 ID

Edited by Alan Hastings, University of California Davis, Davis, CA; received July 7, 2022; accepted March 29, 2023

Effective conservation of ecological communities requires accurate and up-to-date
information about whether species are persisting or declining to extinction. The
persistence of an ecological community is supported by its underlyingnetwork of species
interactions. While the persistence of the network supporting the whole community is
themost relevant scale for conservation, in practice, only small subsets of these networks
can be monitored. There is therefore an urgent need to establish links between the
small snapshots of data conservationists can collect, and the “big picture” conclusions
about ecosystem health demanded by policymakers, scientists, and societies. Here, we
show that the persistence of small subnetworks (motifs) in isolation—that is, their
persistence when considered separately from the larger network of which they are
a part—is a reliable probabilistic indicator of the persistence of the network as a
whole. Our methods show that it is easier to detect if an ecological community is
not persistent than if it is persistent, allowing for rapid detection of extinction risk
in endangered systems. Our results also justify the common practice of predicting
ecological persistence from incomplete surveys by simulating the population dynamics
of sampled subnetworks. Empirically, we show that our theoretical predictions are
supported by data on invaded networks in restored and unrestored areas, even in the
presence of environmental variability. Our work suggests that coordinated action to
aggregate information from incomplete sampling can provide a means to rapidly assess
the persistence of entire ecological networks and the expected success of restoration
strategies.

ecological networks | biomonitoring | structural stability | mutualism | pollination

To assess progress toward local, national, and international biodiversity conservation
targets, it is crucial to understand how ecological communities are being impacted by
global change and how well they are responding to conservation interventions (1, 2).
Biomonitoring—the process of regularly measuring ecosystems to track changes in
different indicators over time—therefore has a critical role to play in guiding conservation
policy and practice.

Perhaps, the most fundamental indicator of ecosystem health is the composition
and stability of communities. This can be assessed by monitoring communities and
whether any of their component species are declining to extinction (3). Thus, for
conservation scientists and decision makers, community persistence—the probability
that a community can sustain positive abundances of all its constituent populations over
time—is one of the most important properties to know about a community (4, 5).

One widespread approach to measure community persistence relies on species
interaction networks, where nodes, representing species, are joined by links, representing
biotic interactions, such as predation or pollination (6). These networks are then used as a
“skeleton” for simulating population dynamics, from which persistence is then measured.
While this approach is powerful, collecting interaction network data using fieldwork is
expensive and time consuming, often requiring huge investments to approach sampling
completeness (7–10). For example, studies have shown that even with exhaustive sampling
efforts that covered 80% of pollinator fauna, it was possible to capture only 55%
of the interactions in a plant–pollinator network, and it was estimated that sampling
effort would need to increase by five times to record 90% of the interactions (11).
Similarly, while DNA barcoding and metabarcoding approaches offer the prospect of
achieving complete sampling of networks more easily, at present, these methods are far
from the norm (12), requiring significant technical expertise, sampling protocols, and
infrastructure with costs that can be comparable to traditional field approaches (12).

The expense and time involved in collecting community-level data, such as sampling
interaction networks, are in direct contrast to the needs of biomonitoring and the
frugal realities of conservation practice (7). Biomonitoring relies on indicators that are
sufficiently quick and cheap to sample that regular “snapshots” of ecosystem status
can be taken. Thus, although persistence is a fundamental property of communities
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that we wish to monitor, time and cost constraints mean that
sampling the required interaction network data with sufficient
temporal, spatial, and taxonomic resolution is impractical in all
but the most well-resourced contexts.

It has been suggested that interaction networks can be
monitored cost-efficiently if only a small subset of interactions—
a subnetwork—is sampled (7, 13). A common practice is to
predict persistence by simulating the population dynamics of the
sampled subnetwork. However, it is unclear whether this practice
provides reliable conclusions about the persistence of the wider
network. Thus, it is important to assess whether there is any
consistent relationship between the persistence of a subnetwork
and the persistence of the larger network that the subnetwork
comes from. If such a relationship could be established, then
whole-network persistence could be inferred from subnetworks
that require much less effort to sample. In turn, the prospect of
rapid and affordable biomonitoring of network persistence would
become feasible.

Here, we provide a solution to diagnosing the persistence of
ecological networks without the need for extensive sampling.
Specifically, we show that the persistence of a network as a
whole is linked to the persistence of small-scale subnetwork
structures (network motifs) that require much less sampling
effort to monitor (Fig. 1). We use coexistence theory to show
that mutualistic and antagonistic interaction networks that are
persistent as a whole are composed of subnetworks that would
persist in isolation. That is, they are composed of subnetworks
that would persist even if they were not embedded within
the larger network of interactions. We term these subnetworks
persistent in isolation. We show that reliable conclusions about
the persistence or nonpersistence of a whole network can be made
from sampling the interactions of a small proportion of species.
We corroborate our results using empirical data on invaded
mutualistic interaction networks (14). We show that persistent
ecological networks, despite their spatiotemporal variability,
contain more persistent subnetworks in isolation in areas where

invasive species have been removed through restoration action
than in areas where there has been no restoration. Finally,
we discuss our results in light of opportunities for the rapid
biomonitoring of network persistence. By providing an approach
for a rapid assessment of the status of a community, our
approach could comprise the detection stage of a detection and
attribution framework for biodiversity monitoring. This rapid
detection step would support local planning and prioritization
of action for communities that are not persistent. If integrated
into a large-scale monitoring network, our approach could
help provide a national or global picture of the persistence of
ecological systems.

Linking Network and Subnetwork Persistence

The challenge we face is knowing whether the persistence of
a large species interaction network can be inferred by only
observing the structure of one or more subnetworks (also known
as interaction motifs). The structural approach in ecology (15, 16)
provides a theoretical solution to this problem by connecting
the persistence of the network as a whole with that of its
subnetworks. The central concept in the structural approach is the
coexistence domain (D)—the full range of conditions (parameter
space) under which all species in a network can coexist, given a
particular network structure (17). In other words, species coexist
when the network parameter is inside the coexistence domain
and do not coexist when the network parameter is outside
the coexistence domain. Hence, the persistence of a network
as a whole can be studied using the coexistence domain of its
underlying network structure (Dwhole). Similarly, to understand
the persistence of a subnetwork, we can study the coexistence
domain of its underlying subnetwork. This can be done in two
ways, as illustrated in Fig. 2 and SI Appendix, Fig. S1. First, we
can study the subnetwork as part of the larger network in which
it is embedded; formally, this is the projection of the coexistence
domain of the network onto the subnetwork (DEmbedded

sub ) (18).

Persistence of 
the whole network Monitoring 

subnetworks

Interactions in subnetworks
Subnetwork 1 Subnetwork 2

Map to  
ecological dynamics

Isolation persistence of subnetworks
Predict 

persistence

Update belief 
(Bayes factor)

Time

A
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Persistence 
in isolation

Time

A
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ce

Non-persistence 
in isolation

Fig. 1. Illustrated scheme to detect network persistence from monitoring subnetworks. For illustrative purposes, we consider a hypothetical network structure
of a bipartite mutualistic network consisting of five pollinator species and four plant species (orange box). Persistence is a network-level property, which makes
the network scale the most relevant scale for measuring persistence. However, time and cost constraints and sampling biases limit our knowledge of
the network structure. Thus, we most often observe small-scale subnetworks called motifs (two green boxes) that are embedded into the larger network.
“Embedded persistence” refers to persistence of these motifs that are part of larger networks. However, given that the whole network is unobservable, we
can instead study whether the subnetworks can persist in isolation, removed from the wider network context, which we call the “persistence in isolation” of
a subnetwork. This property of “persistence in isolation” is widely used in empirical studies, where researchers predict species persistence by simulating the
population dynamics of the sampled subnetwork. While it is clear that the persistence of the network determines the embedded persistence of subnetworks,
here, we show that the persistence in isolation of subnetworks is linked to the persistence of the network as a whole, and we can update our belief on the
persistence of the whole network from observing the persistence in isolation of the subnetworks.
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Fig. 2. A structural approach to link persistence across scales. We establish the link between the network and the subnetwork scales via the concept of
the coexistence domain: the region of all parameters in which a given set of species coexists. For illustrative purposes, we consider a hypothetical 3-species
network. If we want to understand persistence of the network as a whole, we should study the coexistence domain of the network where all species coexist
(orange region). If we want to understand the isolation persistence of a subnetwork, we should study the coexistence domain of the subnetwork in isolation
i.e., removed from the larger network of interactions in which it is embedded (hashed region). If we then want to understand the persistence of the network
as a whole, but we can observe only a subnetwork (embedded persistence), then the observed coexistence domain for the subnetwork is the projection of
the network’s coexistence domain into the subnetwork’s (light green region). The projection of the network’s coexistence domain is always larger than (e.g.,
subnetwork with species 2 and 3) or equal to (e.g., subnetwork with species 1 and 2) the subnetwork’s coexistence domain.

Second, we can study the coexistence domain of the subnetwork
in isolation, removed from the larger network of which it is a
part (DIsolation

sub ).
In field surveys, where only a subset of a network can be

sampled, the network in which that subset is embedded is not
observed—onlyDIsolation

sub is known. Thus, the question is whether
the true unobservable coexistence domain of the subnetwork
(DEmbedded

sub ) is equivalent to the observed coexistence domain of
the subnetwork in isolation (DIsolation

sub ) and whether DIsolation
sub can

be used to infer the persistence of an unobservable network as a
whole (Dwhole).

We formalize DEmbedded
sub and DIsolation

sub using the structural
approach. The structural approach applies to any population
dynamics that are topologically equivalent to Lotka–Volterra dy-
namics (5, 19). Note that any quasi-polynomial dynamics, which
include a large class of ecological models, can be equivalently
mapped into Lotka–Volterra dynamics (20). Here, we calculate
persistence using a population dynamics model. We assume that
a network has S-interacting species in total and is governed by
the Lotka–Volterra dynamics (21):

dN
dt

= diag(N) (r + AN) , [1]

where N is the vector of species densities, and A is the matrix of
species interactions. Under the governing population dynamics,
the coexistence domain of a network is given by ref. 17:

Dwhole = {r | r = −
S∑

j=1
N ∗j Aj, with N ∗j > 0}, [2]

where Aj denotes the j-th column of the interaction matrix A.
The coexistence domain of a subnetwork with the set of species
S in isolation is given by

DIsolation
sub = {r | r = −

∑
j∈S

N ∗j A
S×S
j , with N ∗i > 0}, [3]

where AS×S is the submatrix of A that only has species in the
set of species S . In turn, the coexistence domain of a subnetwork
with the set of species S when embedded in the larger network
is given by

DEmbedded
sub = {r | r = −

S∑
j=1

N ∗j A
S×S
j , with N ∗i > 0}. [4]

It is important to note that DEmbedded
sub (Eq. 4) is always greater

than or equal to DIsolation
sub (Eq. 3). This is because the summation

in Eq. 4 is done across all columns, while the summation in Eq. 3
is only done across a subset of all the columns. For example, in
Fig. 2, DEmbedded

sub = DIsolation
sub for the subnetwork with species

1 and 2, while DEmbedded
sub ⊃ DIsolation

sub for the subnetwork with
species 2 and 3. This result implies that observing only a subset
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of species without its wider network context (i.e., DIsolation
sub )

never overestimates the true coexistence potential of this subset
when embedded into the larger network of interactions (i.e.,
DEmbedded

sub ). This result is general and does not depend on types
of species interactions or the number of species.

Mesoscopic Organizational Principles Behind
Macroscopic Persistence

To study the relationship between subnetwork persistence in
isolation and network persistence as a whole, we borrow concepts
from statistical physics and test whether a macroscopic (whole-
network) phase transition is reflected in drastic changes of
mesoscopic (subnetwork) properties (22). At the macroscopic
scale, the network as a whole exhibits only two phases: persistence
or nonpersistence. At the mesoscopic scale, a subnetwork has
an additional key property: whether the persistence of the
subnetwork is identical in isolation and when embedded in
the larger network. An embedded subnetwork is persistent if,
and only if, the network as a whole is persistent. Thus, if
the persistence of a subnetwork is identical in isolation and
when embedded in the larger network, then the subnetwork’s
persistence (or not) in isolation also indicates whether the
network as a whole persists (or not). This property is always
true for the subnetworks with DEmbedded

sub = DIsolation
sub , and is true

with probability vol(DIsolation
sub ∩ DEmbedded

sub )/vol(DEmbedded
sub ) =

vol(DIsolation
sub )/vol(DEmbedded

sub ) for all subnetworks, where “vol”
denotes the hypervolume of the corresponding geometric do-
main. This relationship betweenDEmbedded

sub andDIsolation
sub suggests

the possibility that the persistence of one subnetwork can be a
probabilistic indicator of the persistence of the network as a
whole. Furthermore, the persistence of many subnetworks can

be an almost-deterministic indicator of the persistence of the
network as a whole.

From the above, we hypothesize that the proportion of
subnetworks that are persistent in isolation is different between
persistent and nonpersistent networks. To formally test this
hypothesis, we simulate theoretical networks and analyze the
persistence in isolation of their constituent subnetworks as
the network is moved along a gradient from persistence to
nonpersistence.

We systematically sample inside and outside the coexistence
domain of simulated networks (i.e., across two macroscopic
phases: persistence and nonpersistence) and check the persistence
in isolation of all constituent subnetworks at each sampling
point (Fig. 3A). We adopt the normalized distance of the
sampled point from the centroid of the coexistence domain as
the tuning parameter of the phase transition. Specifically, the
centroid has a normalized distance 0, all points on the border
of the coexistence domain have normalized distance 0.5, and all
points inside (respectively, outside) have normalized distances
less (respectively, greater) than 0.5 (Fig. 3A).

We characterize subnetworks using bipartite motifs (23, 24).
Bipartite motifs are small subnetworks containing between two
and six species, with all species having at least one link (23,
24). Bipartite motifs describe all possible unique subnetwork
topologies up to six species. As described above, we enumerate
all the motifs present in each network along the gradient of
persistent and nonpersistent networks (Fig. 3A) and calculate
both the persistence in isolation and embedded persistence of
each motif. Although the number of motifs scales exponentially
with network size, we expect to see a smooth, rather than sharp,
phase transition in the persistence of motifs along the gradient,
given the network size in our simulations (22).

Corroborating our hypothesis, as networks were moved along
a gradient from network persistence to nonpersistence (Fig. 3A),
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Fig. 3. Generic phase transition across scales. (A) Schematic illustration of the structure of our experiment. For a given network, we measure the proportion
of subnetworks (motifs) that are persistent along “transects” that span inside and outside the coexistence domain of the network. Within the coexistence
domain, the network is persistent; outside the coexistence domain, the network is nonpersistent. The transects span a tuning parameter that ranges from 0 to
1, with 0 being at the center of the coexistence domain and 0.5 being at the boundary of the coexistence domain. (B) Subnetwork mechanisms driving network
persistence as a whole. The x-axis denotes a tuning parameter moving the network from noncoexistent (nonpersistent) to coexistent (persistent). The y-axis
denotes the proportion of subnetworks (motifs) in the network that persist (blue) and do not persist (red) in isolation. The whole network is persistent in the
left half and nonpersistent in the right half. Each thin line represents one simulation along a “transect,” as shown by the black line in panel A (50 are shown
here), and the thick lines denote the average. We see a transition in the proportions of persistent and nonpersistent subnetworks as the network transitions
from persistence into nonpersistence. This transition shows that a persistent network is primarily composed of persistent subnetworks, and vice versa. This
phase transition is generic in almost all simulations (SI Appendix, Appendix B).
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we identified a phase transition of persistence across scales of
networks and subnetworks (Fig. 3B). That is, when a network
as a whole is persistent, a high proportion of its constituent
subnetworks (motifs) must themselves be persistent in isolation.
Conversely, when the network as a whole is not persistent, the
majority of its constituent subnetworks are not persistent in iso-
lation. Importantly, the qualitative pattern was consistent across
different community richnesses, interaction types (mutualistic or
antagonistic), and network structures (SI Appendix, Appendix B).
This result is consistent with empirical observations in microbial
communities (25). We also provide a heuristic explanation of the
emergence of the phase transition (Methods).

A Bayesian Framework to Monitor Network
Persistence from Subnetwork Persistence

These theoretical findings additionally show that the presence
of a single persistent subnetwork in isolation is a probabilistic
indicator of the persistence of the network as a whole, while
the presence of many persistent subnetworks in isolation is
a nearly deterministic indicator (with exponentially decreasing
error) of the persistence of the network. In other words, the
generic phase transition (Fig. 3) tells us about the probability
of subnetwork persistence in isolation when we know whether
the whole network is persistent or not. We now ask the inverse
question: How we can infer the persistence of the whole network,
when we know only whether subnetworks are persistent in
isolation.

To formalize this idea, we provide a Bayesian approach to
update our beliefs about the persistence of the network from
whether subnetworks are persistent in isolation. Specifically, we
compute the Bayes factor: the ratio of the posterior likelihood of

the network being persistent as a whole over being nonpersistent,
given the observed persistence in isolation of sampled subnet-
works. The value of the Bayes factor can be used as evidence
of whole-network persistence. In the convention of Bayesian
statistics, a Bayes factor larger than 102 can be considered
decisive evidence that the network is persistent; between 10
and 102 is strong, between 101/2 and 10 is substantial, and less
than 101/2 is not worth considering as evidence. The reciprocal
thresholds operate to statistically determine whether the network
is nonpersistent (26, 27). Note that these thresholds should
be considered as a guide, and individual decision-makers may
interpret Bayes factors differently, depending on their own
attitudes to risk and other contextual factors. The details of our
statistical framework can be found in Methods.

Fig. 4 shows the proportion of species we need to monitor
to reach statistical evidence about whole-network persistence.
We find that, regardless of whether the network as a whole
is persistent or not, the proportion of species which require
monitoring to achieve higher confidence about network persis-
tence/nonpersistence decreases with increasing network size. This
is because the Bayes factor generally increases exponentially with
the number of sampled networks. Thus, the required monitoring
effort increases only slowly with increasing biodiversity in the
community.

We also find that the proportion of species which require
monitoring is lower, and the statistical confidence is higher when
the network as a whole is not persistent (Fig. 4 A-C ) compared
to when the network is persistent (Fig. 4 D–F ). This is because,
as our samples are from a binomial distribution, the variance is
highest when the network is persistent (i.e., binomial distribution
with roughly half of subnetworks persistent in isolation). This
suggests that it is easier to detect if a whole network is not
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Fig. 4. Bayesian inference of network persistence from subnetwork persistence. The Upper panels (A)–(C) show the case when the whole network is not
persistent, while the Lower panels (D)–(F ) show the case when the whole network is persistent. The vertical panels show different network sizes (30, 50, and
70 species, respectively). The x-axis shows the percentage of monitored species out of all present species. The y-axis shows the proportion of samples with
different evidence strengths that supports that the network is persistent (Lower panels) or nonpersistent (Upper panels). We follow the convention in Bayes
statistics to classify evidence strength based on Bayes factor K : K > 102 is considered decisive, 10 < K < 102 is considered strong, 101/2 < K < 10 is considered
substantial, and 1 < K < 101/2 is considered not worth considering as evidence. Note that these thresholds should be considered as a guide, and individual
decision-makers may interpret Bayes factors differently, depending on their own attitudes to risk and other contextual factors. We find that the proportion
of species we need to monitor would decrease with increasing species richness. We also find that it is generally easier to statistically determine whether the
network as a whole is not persistent from monitoring subnetworks.
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persistent than persistent. Overall, the results in Fig. 4 show that,
by monitoring only a small proportion of species, we can be
reasonably confident about the persistence or nonpersistence of
a whole network.

Empirical Analysis

While it is difficult to directly empirically test the phase transition
resulting from the theoretical analysis above, a testable prediction
from our result is that a network as a whole is more likely to persist
if it contains more persistent in isolation subnetworks. To test
this, we analyzed a temporal dataset of eight plant–pollinator
networks from Seychelles, each sampled over eight consecutive
months (144 pollinator species and 38 plant species in total) (14).
In this dataset, half of the networks are subject to disturbance
in the form of invasive plants, while the other half have had
invasive plant species removed through restoration action (14).
Following earlier work that showed that restored sites had higher
diversity, function, and resilience (14), we expect restored sites
to have higher persistence than unrestored invaded networks.
As a consequence, following our theoretical results above, we
in turn expect restored networks to contain more persistent-in-
isolation subnetworks (motifs) than invaded networks. Details in
comparing motif persistence can be found in Methods.

Fig. 5A shows that the restored (undisturbed) networks have a
higher overrepresentation of persistent in isolation subnetworks
(motifs) compared to the unrestored (disturbed) networks. This
pattern is robust through the whole sampling period, despite
the reorganization of species interactions in the network. Impor-
tantly, Fig. 5B shows that these patterns remain qualitatively true

even if we can monitor the interactions of only a small subset of
all locally present species. This shows that we can gain insights
about the network as a whole using information from only a
subset of that network that is much quicker to sample.

Our approach could greatly reduce the sampling cost. The
analysis in SI Appendix, Fig. S17 shows that the community could
be effectively monitored for persistence with five plant species.
We therefore calculated the reduction in costs that would result
from having to sample only five plant species per network. We
found that the cost of plant observation would be reduced by
31%, and the cost of insect identification would be reduced by
74%. Combined, this represents a cost reduction of 42%. The
details of sampling cost estimates can be found in SI Appendix,
Appendix E. It is important to note that although monitoring a
subset of species reduces costs, monitoring costs can be strongly
influenced by the species involved, the types of interaction, and
the target metric of interest. All these features must be considered
by decision makers when designing monitoring strategies.

Discussion

We have uncovered a generic probabilistic link across organi-
zational scales of ecological networks: An ecological network is
more likely to be persistent when a majority of its subnetworks are
persistent in isolation, and vice versa. This establishes a theoretical
foundation to rapidly monitor the persistence of communities by
sampling only small numbers of interactions in subnetworks.
Given cost and time constraints common to much conservation
work, it is only practical to have high quality data on a small
fraction of all locally present species and interactions. Our results
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Fig. 5. Restored mutualistic networks contain more subnetworks with a higher likelihood of persistence in isolation than unrestored disturbed networks.
We use a temporal dataset with 64 networks (eight networks sampled over eight months) located on the granitic island of Mahé and Seychelles (14). The
x-axis denotes the eight consecutive months between September 2012 and April 2013. The y denotes the z-scores of a given subnetwork (overrepresentation
or underrepresentation of empirical motif frequency compared to motif frequency in randomized networks). The black horizontal line corresponds to the
threshold above or below which a subnetwork (motif) occurs significantly more than random (z-score = 2). The green lines correspond to the restored networks,
while the purple lines correspond to the disturbed and unrestored networks. (A) Monitoring the network. Each translucent light line corresponds to a different
network. The thick lines correspond to the average across four different networks. The persistent-in-isolation subnetworks are significantly overrepresented in
the larger networks, and the overrepresentation is stronger in restored networks than in disturbed networks. These patterns are consistent with the natural
history of these plant–pollinator networks. (B) Monitoring a subset of the network. Suppose that we cannot monitor the whole network but only a subset of it.
Here, we show the case for monitoring six species (SI Appendix, Appendix D for other numbers of monitored species). We find that all the qualitative patterns
linking subnetworks and the network in Panel (A) remain. This shows that we can monitor a subnetwork (six species of the whole network) and then study
the persistence in isolation of its subnetworks (three to five species in the monitored six species), which would provide useful information of the network as a
whole.
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have shown that determining the persistence in isolation of a few
subnetworks can lead to robust conclusions about the persistence
of the network as a whole: If few randomly sampled subnetworks
are persistent, then the network as a whole is likely persistent. Our
monitoring scheme is insensitive to the size of the whole network,
which is in direct contrast to prohibitively expensive sampling of
the whole network estimated to be exponential efforts with the
size of the whole network (11).

Our results help with a common but fundamental challenge
in biodiversity conservation—to make predictions and provide
guidance with limited observations (28, 29). The methods
presented here could be deployed by a monitoring team to
make a decision about community persistence as fast and as
cost-effectively as possible. If the team concluded that the focal
community was not persistent, it would then have to determine
the cause (attribution to drivers) and then act on those causes.
Guidance on attribution is beyond the scope of this work; what
we provide is an approach to provide a rapid assessment of
the status of the community. This is the detection stage of a
detection and attribution framework for biodiversity monitoring
(30). This rapid detection step would support local planning
and prioritization of action for communities classified with high
confidence as not being in a persistent state.

The monitoring discussed above is only a first step in the
broader goal of monitoring many ecosystems across a country to
establish whether regional or national progress is being made to
increase the number (or proportion) of systems that are in a persis-
tent state and then deploy resources in response to policy targets
to recover those (or some fraction of them) not in a persistent
state. In this case, the national monitoring network would work to
assess progress toward a general persistence target (with a relevant
simple indicator—the proportion of sample communities in a
persistent state) across many communities/ecosystems.

Besides the application to rapid biomonitoring, our work
also connects two separate schools of thought on ecological
networks defined by distinct ecological scales. One school has
focused on the mesoscopic scale, providing a more mechanistic
understanding through the study of specific small subnetworks
or motifs (often called “trophic modules”), such as apparent
competition (31–35). In contrast, the other school has focused
on the macroscopic scale, studying the interaction networks of
entire networks to provide an ecologically more relevant link, but
suffering from being coarse-grained and highly phenomenolog-
ical (36–39). Unfortunately, these two schools have little cross
talk. The few theoretical studies on this topic suggest that there is
no deterministic, one-to-one link that maps results across the two
schools (40–42). We confirm that such a deterministic link does
not exist. However, we found that a generic probabilistic link does
exist (Figs. 2 and 3). This generic link provides an opportunity
to take advantage of both schools. For example, we have taken
a phenomenological approach with the trophic constraints to
explain why some subnetworks are more persistent in isolation.
However, a rich literature has cataloged and explained why some
subnetworks are more persistent in isolation, ranging from sign
stability (43, 44) to consumer–resource relationships (35, 45),
and then applied it to explain observed patterns of species-rich
ecological networks (34, 46, 47). Our results have justified that
such practice is probably approximately correct (48).

We have provided a Bayesian approach to update our belief
on the persistence of ecological networks (Fig. 1). Our belief
is quantified by the Bayes factor—the ratio of the posterior
probability of the monitored network being persistent over
not being persistent. The Bayes factor is consistently updated

by our knowledge of species’ life history (as priors) together
with persistence-in-isolation criteria of the observed subnetworks
(as evidence). We have followed the convention of Bayesian
statistics to set the threshold of statistical evidence (Fig. 4);
however, in applied monitoring design, which threshold to
use should be subject to indigenous and expert knowledge
(49, 50). We have found that conclusions about whole network
persistence or nonpersistence can be made from only a handful
of subnetworks (Fig. 3).

Our key theoretical prediction—that subnetworks with a
higher probability of persistence in isolation are overrepresented
in more persistent networks—is supported by empirical temporal
mutualistic networks. These empirical results agree with the
natural history details of these systems. For example, Fig. 5 shows
how restored networks have only slightly higher frequencies of
persistent subnetworks than unrestored networks until month
four, when the two treatments diverge, and persistent subnet-
works substantially increase in number in restored sites relative
to unrestored (disturbed) sites. Networks in the two treatments
then converge at the end of the flowering season. This divergence
in month four corresponds to the start of the rainy season
in Seychelles. Rains create a patchy distribution of resources.
In the unrestored sites, free movement of pollinators between
patches is hindered because invasive species grow densely,
disrupting the ability of pollinators to forage effectively (14). If
pollinators cannot find resources, or cannot move freely between
individuals and species, this increases competition and reduces
niche complementarity, which likely causes reduced persistence.

While this study has focused on advancing our theoretical
and empirical understanding of persistence, it is important
to outline how our approach could be applied in practice.
In terms of the required data collection, our approach needs
only a small amount of binary (bipartite) species interaction
network data. This could be achieved by observing a certain
number of randomly selected focal species and recording their
interactions, as in the empirical analysis shown in Fig. 5. Our
approach does not rely on randomly sampling subnetworks, but
rather randomly sampling interactions of a certain number of
species, from which network (and thus subnetwork) structures
emerge. The number of species sampled depends on the strength
of evidence about whole-network persistence required by the
practitioner, as shown in Fig. 4 (e.g., sampling interactions of
∼40% of species in communities containing 30 to 70 species is
required to be reasonably confident). There is no set time period
these interaction data should be collected for: The method does
not dictate any required length, and so the sampling duration
would depend on the question being asked (the temporal scale
over which the practitioner is interested in the community’s
persistence). The same is true for spatial scale. Networks are a
spatial snapshot of species and their interactions; defining the
spatial limits of a network (or the edge of a community) remains
an outstanding question for community ecology. Therefore, the
area being sampled should be decided by the practitioner, using
their local knowledge and depending on the questions being
asked. Our approach does not demand any particular spatial
scale or extent. No specific information is needed about the
full community, other than an estimate of the total species
richness to estimate how many species should be sampled based
on the proportions in Fig. 4. Once this subset of network
data has been collected, all downstream analyses to calculate
subnetwork persistence, and thus whole-network persistence, rely
on modeling. Details of appropriate parameterizations for these
models are given in Materials and Methods.
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A limitation of our approach is that we assume that the
subnetworks are random samples from the whole network.
However, in practice, sampling bias is pervasive (51, 52). For
example, more abundant species are more likely to be sampled.
Accounting for sampling bias is a key next step to make our
framework more applicable to conservation monitoring and
management (53, 54). A related issue is that, for the purpose
of monitoring persistence, some species are more important
than others (SI Appendix, Figs. S18 and S19). Future work
can explore how to predict species importance from available
species attributes to identify species that should be a priority for
monitoring effort.

Another limitation is that we focus on the persistence of all
species. However, as turnover is ubiquitous (55), conservation
often focuses on the persistence of some keystone species. One
possible direction is to link our theoretical framework with other
theories studying the persistence of a subset of all species (56–58).
A similar limitation is that we focus on local ecological dynamics
and do not consider the effects of dispersal. To address this,
future research could try to link our theoretical framework with
other theories on the persistence of metapopulations (59) and
metacommunities (60).

Overall, the match between theoretical predictions and empir-
ical observations shows that information about the persistence
of a species-rich ecological network is encoded in its small
subnetworks and can be recovered through an appropriate
theoretical lens and statistical analysis. This finding has significant
application to biodiversity monitoring as indicators of ecological
persistence and biodiversity intactness are key foci of monitoring
networks around the world. The method we have provided here
has the potential to save time and effort and accelerate our ability
to detect and mitigate unwanted change to the structure and
function of ecological networks.

Supporting Information Appendix (SI). Authors should submit a
single separate SI Appendix PDF file, combining all text, figures,
tables, movie legends, and SI references. SI Appendix will be
published as provided by the authors; it will not be edited or
composed. Additional details can be found in the PNAS Author
Center. The PNAS Overleaf SI template can be found here. Refer
SI Appendix in the manuscript at an appropriate point in the text.
Number supporting figures and tables starting with SI Appendix,
S1 and S2, etc.

Authors who place detailed Materials and Methods in an SI
Appendix must provide sufficient detail in the main text methods
to enable a reader to follow the logic of the procedures and results
and also must reference SI methods. If a paper is fundamentally
a study of a new method or technique, then the methods must
be described completely in the main text.

Materials and Methods

Parametrizing InteractionNetworks. For brevity, we focus on mutualistic in-
teraction networks here, but our approach can equally be applied to antagonistic
interaction networks, such as predation and parasitism (SI Appendix, Appendix
B) (6, 57). First, we generate theoretical mutualistic networks with ten pollinators
and eight plants (SI Appendix, Appendix B for the robustness of our results to
different network sizes). For illustrative purposes, we present here Erdős–Rényi
structures, however, our results apply and are consistent for other network
structures, such as nested networks (SI Appendix, Appendix B). We then follow
an ecologically motivated parameterization that has been widely adopted in the
literature (38, 61–63). The interaction matrix of a mutualistic network can then
be partitioned as

A =


intraguild competition mutualistic benefit

among plants for plants
mutualistic benefit intraguild competition

for animals among animals


=

[
C(P) M(P)

M(A) C(A)

]
.

The mutualistic benefit (M(P) andM(A)) between species iand j is parameterized
as mij = m0bij/d

δ
i , where bij = 1 if species i and j directly interact

and bij = 0 otherwise, m0 represents the overall strength of mutualistic
interaction, di represents the number of interaction partners, and δ represents
the mutualistic trade-off. The intraguild competition (C(P) and C(A)) between
species is parameterized using a mean-field approach where we set the

intraspecific competition c(P)ii = c(A)ii = −1 and interspecific competition

c(P)ii = c(A)ii = −ρ.

A Mean-Field Explanation of the Generic Phase Transition. A rigorous
explanation of the emergence of the generic phase transition is not trivial. Here,
we take a heuristic mean-field approach to explain its emergence. We use Swhole
to denote the larger network, where Swhole = 1 indicates that the network is
persistent as a whole, while Swhole = 0 indicates that the network is not
persistent. We use Sisolation

subj
to denote the persistence in isolation of subnetwork

j and SEmbedded
subj

to denote its embedded persistence.

Given that the network is persistent as a whole, the conditional probability
distribution of persistence in isolation of subnetworks is

P(Sisolation
sub | Swhole = 1) =

∏
j

P(Sisolation
subj

| Swhole = 1)

≈

∏
j

 vol(Disolation
subj

)

vol(DEmbedded
subj

)

Sisolation
subj

1−
vol(Disolation

subj
)

vol(DEmbedded
subj

)

1−Sisolation
subj

.

Given the linearity of expectation, the expected number of persistent
subnetworks is

E(Sisolation
sub | Swhole = 1) =

∑
j

vol(Disolation
subj

)

vol(DEmbedded
subj

)
.

In contrast, given that the network as a whole is not persistent, the conditional
probability distribution of persistence in isolation of subnetworks is

P(Sisolation
sub | Swhole = 0) =

∏
j

P(Sisolation
subj

| Swhole = 0)

≈

∏
j

(
vol(Disolation

subj
)

)Sisolation
subj

(
1− vol(Disolation

subj
)

)1−Sisolation
subj

.

Consequently, its expected number of persistent subnetworks is

E(Sisolation
sub | Swhole = 0) =

∑
j

vol(Disolation
subj

).

Importantly, the vol generally decreases exponentially with network size
(17, 64). Thus,E(Sisolation

sub | Swhole = 0) is exponentially small. In contrast, the

ratio vol(Disolation
subj

)/vol(DEmbedded
subj

) does not decrease exponentially (17, 38),

thus E(Sisolation
sub | Swhole = 1) is large. These comparisons confirm what we

observe in the phase transition.
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Bayesian Inference of Network Persistence from Subnetworks. We take
a heuristic Bayesian approach to infer the persistence of the network as a
whole from subnetworks. We use Swhole to denote the larger network, where
Swhole = 1 indicates that the network as a whole is persistent, whileSwhole = 0
indicates that the network is not persistent. We use Sisolation

subj
to denote the

persistence in isolation of subnetwork j and SEmbedded
subj

to denote its embedded

persistence. Note that SEmbedded
subj

= Swhole by definition.

Given the observations of persistence in isolation of subnetworks, the
conditional probability of the network persistence as a whole is

P(Swhole | S
isolation
sub ) =

∏
j

P(Swhole)P(Sisolation
subj

| Swhole)

P(Sisolation
subj

)
,

where the first equality comes from the assumption of independence: whether
a subnetwork persists is independent of one another. Thus, our updated belief
in the persistence of the whole network is

P(Swhole=1 | S
isolation
sub )

P(Swhole=0 | S
isolation
sub )

≈
P(Swhole = 1)
P(Swhole = 0)

∏
j

 1

vol(DEmbedded
subj

)

Sisolation
subj

×

1−
vol(Disolation

subj
)

vol(DEmbedded
subj

)

1−Sisolation
subj

.

Comparing Motif Persistence in Empirical Networks. We measure the
persistence in isolation of subnetworks as the size of their coexistence domains.
Importantly, comparing which subnetworks are more persistent can easily
be confounded by different parameterizations. That is, small changes in
parameters used to calculate the coexistence of different subnetworks can
significantly influence conclusions (65, 66). To ensure a fair comparison, we
focus on subnetwork pairs that are the transpose of each other because we
can parameterize both subnetworks in the pair identically (SI Appendix, Fig.
S10). For example, we compare the subnetwork with two top nodes connected
to a single bottom node, with the subnetwork containing two bottom nodes
connected to a single top node. In ecological terms, this might be comparing the
subnetwork describing two pollinators visiting one plant to the subnetwork with
one pollinator visiting two plants. In total, we have seven pairs of subnetworks

that range from three species to five species each, and 10 pairs of subnetworks
with six species each (SI Appendix, Fig. S10). Note that despite the interaction
matrices for each pair of subnetworks being the transpose of each other, the
coexistence domains of the two subnetworks are different because of, and
only because of, their trophic constraints (17, 67): Plants always have positive
intrinsic growth rates in our bipartite networks. For each different subnetwork,
we compute the size of its coexistence domain by systematically exploring
the parameter space, defined by three parameters: the mutualistic trade-
off δ, the overall strength of mutualistic interactions m0, and the intraguild
competition strength ρ. SI Appendix, Fig. S11 shows that which motif type
in a pair has a higher coexistence domain is consistent across almost all
parametrization.

We then applied the theoretical results and examined the empirical
frequency of each subnetwork (motif) in the observed mutualistic networks.
We first computed the raw number of subnetworks present in each empirical
mutualistic network using the bmotif R package (24). Next, we compute the
z-score of the empirical subnetwork frequencies relative to the Erdős–Rényi
null model (68, 69). Next, we compare the patterns of these null-corrected
subnetwork frequencies between unrestored (invasive species present) and
restored (invasive species removed) sites (14). Lastly, we investigate whether
these patterns remain if we can monitor only a subset of all species; this tests
whether conclusions about whole-network persistence can be made from easy-
to-sample subnetworks.

Data, Materials, and Software Availability. Data of empirical plant-
pollinator networks is available from https://www.nature.com/articles/nature
21071 (70). The source code to produce the results is available on GitHub at
https://github.com/clsong/ReproduceRapidMonitoring (71).
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