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A Derivation of the analytic estimate

Here we derive the analytic-based estimate (Eqn. 7). Recall that the connectivity matrix M is
given by

Mij = Ae
i Aω

j f(dij/ξ). (S1)

The connectivity matrix M can be decomposed as M = A ⊙ D, where Aij = Ae
i Aω

j and Dij =
f(dij/ξ), and ⊙ is the Hadamard product of matrix. If the connectivity matrix M is close to the
assumption of random matrix, then we can use the asymptotic estimate of leading eigenvector
(Eqn. 5) to estimate the capacity λ̂(M) (Füredi & Komlós, 1981):

λ̂(M) = nM + σ2
M

M
+ O

( 1√
n

)
(S2)

= nA ⊙ D +
σ2

A⊙D

A ⊙ D
+ O

( 1√
n

)
(S3)

If we further assume that patch area and distance are uncorrelated, then we have

λ̂(M) = nA ⊙ D +
σ2

A⊙D

A ⊙ D
+ O

( 1√
n

)
(S4)

= nD · A +
σ2

A⊙D

D · A
+ O

( 1√
n

)
(S5)

= nD · A +

(
σ2

D + D
2)(

σ2
A + A

2)− D
2
A

2

D · A
+ O

( 1√
n

)
, (S6)

where the second equation follows from E(XY ) = E(X)E(Y ) for independent X and Y , and the
third equation follows from σXY =

(
σ2

X + µ2
X

)(
σ2

Y + µ2
Y

)
− µ2

Xµ2
Y for independent X and Y .

The asymmetry in the off-diagonal elements originates from the heterogeneous patch area A. The
level of dependency can be measured by

λ(A)
kA + σ2

A/A
, (S7)

which is the ratio between asymptotically estimated eigenvalue and true eigenvalue of A.

Combined Eqns. S6 and S7, we have that

λ̂(M) =
(

nD · A + σ2
A

A
+ σ2

D

D
+ σ2

Dσ2
A

D · A

)
︸ ︷︷ ︸

estimate under independency

· λ(A)
kA + σ2

A/A︸ ︷︷ ︸
correct for dependency

(S8)
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B Illustration of patch distributions
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Figure S1: Each panel denotes a different patch distributions. The details for patch simulations
can be found in Table 1.
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C Illustration of dispersal kernel
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Figure S2: Illustration of the exponential kernel e−d/ξ. Three lines correspond to three different
characteristic scales (ξ = 0.5, 1, 2).
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Figure S3: Illustration of the Gaussian kernel e−d2/(2ξ2). Three lines correspond to three different
characteristic scales (ξ = 0.5, 1, 2).
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Figure S4: Illustration of the non-monotonic kernel Γ(α+β)
Γ(α)Γ(β)

(
dij
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)α−1(
1 − dij

ξ

)β−1
. We chose α =

β = 2. Three lines correspond to three characteristic scales (ξ = 0.5, 1, 2).
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D Empirical metapopulation

Here we provide some summary statistics of the empirical dataset (Huang et al., 2020).

µmean = −2.39
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tStudent(402) = −26.04, p = 2.73e−88, gHedges = −1.29, CI95% [−1.43, −1.16], nobs = 403
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Figure S5: Distribution of patch area in the empirical dataset. The horizontal axis shows the area
size in log scale (unit: km2). The mean area size is 0.09 km2. The vertical axis shows the frequency
of area size.
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Figure S6: Distribution of patch distance in the empirical dataset. The horizontal axis shows the
pairwise patch distance (unit: km). The mean patch distance is 127.98 km. The vertical axis
shows the frequency of patch distance.
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E Predicting the effects of patch removal

In the main text, we have studied how to predict metapopulation capacity of the whole metapop-
ulation from sub-populations. Here we consider the inverse question of predicting metapopulation
capacity of sub-populations from the whole metapopulation.
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Figure S7: Predicting metapopulation capacity of sub-populations in the empirical dataset. We
used all the parameters provided by Huang et al. (2020). We used the analytic-based predictor
as we only have one sample (i.e., the whole connectivity matrix). The horizontal axis denotes the
percentage of removed patches. For example, 75% denotes that 75% of all patches are removed
and only 25% of patches remain. The vertical axis denotes the prediction error ((λ̂ − λ)/λ).
Unsurprisingly, because of the law of small numbers, the variance of prediction error increases as
more patches are removed. The mean of the prediction error increases as well (this is because the
analytic-based estimator is a conservative estimator).
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F Effects of biased sampling

Here, we provide a simple example on biased sampling. Suppose we have a bias to sample large
patches. Specifically, the probability of sampling a patch i is proportional to Aρ

i , where Ai is the
area of the patch i and ρ is the sampling bias. If ρ = 0, then we sample all patches with equal
probability (i.e., unbiased). The larger ρ is, we sample large patches with larger probability.
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Figure S8: Effects of sampling bias on prediction of metapopulation capacity in the empirical
dataset. We used all the parameters provided by Huang et al. (2020). The horizontal axis denotes
the sampling bias ρ. The vertical axis denotes the prediction error ((λ̂ − λ)/λ). The red line
denotes the zero prediction error. When there is no sampling bias (ρ = 0), the distributions of
prediction error are the same as Figure 3. When the sampling bias is small (ρ < 1), we do not see
a strong effect on the prediction error. However, the changes in prediction error become obvious
and keep increasing with a higher level of sampling bias.
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