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Habitat destruction and fragmentation are principal causes of species loss.
While a local population might go extinct, a metapopulation—populations
inhabiting habitat patches connected by dispersal—can persist regionally
by recolonizing empty patches. To assess metapopulation persistence,
two widely adopted indicators in conservation management are metapopu-
lation capacity and patch importance. However, we face a fundamental
limitation in that assessing metapopulation persistence requires that we
survey or sample all the patches in a landscape: often these surveys are
logistically challenging to conduct and repeat, which raises the question
whether we can learn enough about the metapopulation persistence from
an incomplete survey. Here, we provide a robust statistical approach to
infer metapopulation capacity and patch importance by sampling a portion
of all patches. We provided analytic arguments on why the metapopulation
capacity and patch importance can be well predicted from sub-samples of
habitat patches. Full-factorial simulations with more complex models corro-
borate our analytic predictions. We applied our model to an empirical
metapopulation of mangrove hummingbirds (Amazilia boucardi). On the
basis of our statistical framework, we provide some sampling suggestion
for monitoring metapopulation persistence. Our approach allows for rapid
and effective inference of metapopulation persistence from incomplete
patch surveys.
1. Introduction
Populations in nature are rarely isolated. Instead, populations are often distrib-
uted in discrete habitat patches, where these patches are linked by dispersal and
colonization events [1,2]. These metapopulations [3] shift the focus from local
persistence to regional persistence. That is, even when a patch is not suitable
for the persistence of a population locally, the metapopulation can still persist
regionally via the dispersal process [4]. In the current era with the increasing
habitat loss and fragmentation [5,6], we need to be able to predict the
persistence of metapopulations for conservation management.

To predict metapopulation persistence in a patchy landscape, a fundamental
indicator is the metapopulation capacity [7–9]. Rooted within population
dynamics theory, themetapopulation capacity estimates the ability of anyarbitrary
landscape structure to support metapopulation persistence. A metapopulation
would persist regionally as long as its metapopulation capacity is greater than
the extinction rate. Furthermore, based on the contribution of each patch to meta-
population capacity, we can quantify the conservation importance of each patch
[10]. Beyond applicability for metapopulations, metapopulation capacity and
patch importance are also useful for the study of metacommunities [11,12] and
in conservation planning and management [13–16].

However, we face a fundamental limitation to assessing metapopulation
persistence empirically in landscapes supporting many populations [17]. As
all patches have some non-zero influence on metapopulation capacity, to quan-
tify metapopulation persistence would seem to require surveying or sampling
all the habitat patches in a landscape for the relevant parameters, such as
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Figure 1. Fundamental limitation in quantifying metapopulation persistence. (a) A metapopulation of seven habitat patches in a landscape. Each patch has probability pi
of occurrence. This occurrence probability is affected by the colonization rate and extinction rate. The colonization rate includes the dispersal from other patches and
potentially self-colonization. In this example, three patches are sampled, while the other four patches are unsampled. (b) The model metapopulation dynamics. The
colonization rate on patch i is quantified as

PN
j=i f ðdij=jÞAvj pj , which summarizes the contributions of patch distance and area: f (dij/ξ) represents the effect of

distance on dispersal rate, where dij denotes patch distance between patch i and j, ξ denotes the characteristic dispersal distance that transforms distance unitless and f
denotes the dispersal kernel that scales the distance to appropriate rate; Avj represents the effects of patch area, where Aj denotes the area of patch j and ω denotes the
extent of area dependence of dispersal (larger area disperses more if ω > 0, and vice versa). The extinction rate on patch i is quantified as d=Aei , where δ denotes the
general extinction rate (a property of the species and of the habitat network as a whole) and e denotes the extent of area dependence of extinction (larger area has a
lower extinction rate). With this general spatially explicit formulation of metapopulation dynamics, the connectivity matrix is given by Mij ¼ Aei A

v
j f ðdij=jÞ. (c) The

problem in quantifying metapopulation persistence. Two important indications are metapopulation capacity λ and patch importance τi. Metapopulation theory proves
that metapopulation capacity λ is given by the leading eigenvalue of the connectivity matrix, and patch importance τi is given by the associated eigenvector. As the
metapopulation has seven patches in total, the connectivity matrix of the whole metapopulation is of dimension 7 × 7. With the incomplete sampling, only a small part
of the connectivity matrix is estimated, which has dimension 3 × 3. In other words, although we have sampled three of seven patches, we only have information on 9
out of 49 elements of the connectivity matrix. This quadratic decline of information with sampling effort underscores the importance of a statistical framework to
facilitate empirical sampling and monitoring of metapopulation persistence. (Online version in colour.)
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patch quality, pairwise patch distance and so on. Assessment
of some features can be done with remote sensing, but typi-
cally patch quality must be done with the fieldwork. Yet, it
is often logistically infeasible to survey all the patches, so
we are left with incomplete information. Similarly, this
fundamental limitation also applies to the quantification of
patch importance.

To address this crucial constraint, we provide a new
statistical approach to infer metapopulation capacity and
patch importance by sampling a small subset of all the
patches. Technically, metapopulation capacity is the leading
eigenvalue of the connectivity matrix, a matrix summarizing
the structure of connections among habitat patches. For an
arbitrary matrix, the eigenvalue of the whole matrix is
not related to the eigenvalues of sub-matrices [18]. However,
thanks to the ecological constraints on the connectivity
matrix, the eigenvalue of the whole matrix (i.e. true
metapopulation capacity) is inherently constrained by the
eigenvalues of sub-matrices (i.e. sampled metapopulation
capacity). The inference for patch importance is similar.
Patch importance is technically measured as the eigenvector
corresponding to the leading eigenvalue of the connectivity
matrix. Again, thanks to the ecological constraints, the eigen-
vector can be inferred from eigenvalues [19]. In the following,
we justify our statistical framework with analytic arguments
and validate it with extensive simulations with the state-of-
the-art model complexity. As a proof of concept, we applied
our result to an empirical metapopulation of the mangrove
hummingbird (Amazilia boucardi) [15]. Following our statisti-
cal analysis, we highlight the implications of our method
for conservation.
2. Method
(a) Metapopulation dynamics
We adopt a general model of metapopulation dynamics. Sup-
pose we have n discrete habitat patches. The probability of
finding species in patch i is governed by:

dpiðtÞ
dt

¼ (1� piðtÞ)
XN
j=i

f
dij
j

� �
Av

j p jðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Colonization rate

�piðtÞ d

Ae
i|{z}

Extinction rate

, i ¼ 1, . . . , n,

ð2:1Þ
where dij denotes the distance between patch i and j, ξ is the
characteristic distance, f is the dispersal kernel, Ai is the ‘quality’
of patch i, ω is the area dependence of dispersal, e is the area
dependence of extinction, and δ is the extinction rate. Figure 1
illustrates this metapopulation dynamics. Importantly, the
patch quality Ai was originally measured by patch area [20–22]
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and has been widely used in empirical studies. However, a
number of more suitable modern measures have been proposed
to better account for species fitness and landscape suitability,
measuring quality as local environmental conditions instead of
area [1,23,24]. For simplicity and in accordance with the literature
on metapopulation capacity, we refer to patch quality Aj as patch
area throughout.

As a historical note, the basic formulation of equation (2.1)
comes from [7]. We have incorporated many recent modifications:
negative extinction-area parameter [25], self-colonization f (dii) > 0
[26], non-Gaussian dispersal kernel [27] and a non-monotonic
dispersal kernel [28].

Following the metapopulation dynamics (equation (2.1)), the
connectivity matrix M is given by

Mij ¼ Ae
iA

v
j f

dij
j

� �
, ð2:2Þ

which summarizes the structural information defining how
patches are connected by dispersal. The leading eigenvalue λ
of the connectivity matrix M is the metapopulation capacity.
Reference [7] proved a simple criterion that a metapopulation
will persist as long as

l . d: ð2:3Þ
The patch importance Li of patch i measures how much the
metapopulation capacity decreases if we remove this patch.
Mathematically, the patch importance is [10],

Li ¼ lti, ð2:4Þ
where τi is the ith element in the leading eigenvector of matrix
M. The eigenvector is normalized such that τi sums to 1. Thus,
the relative patch importance is given by τi. Importantly, given
the locality of this measure, it does not necessarily imply what
happens if we remove two or more patches, or what happens
if we add a new patch.
(b) Analytic argument on metapopulation capacity
All elements Mij in the connectivity matrix M (equation (2.2)) are
clearly non-negative. If we assume that the kernel is strictly posi-
tive (f (dij) > 0), then the Perron–Frobenius theorem guarantees
that the metapopulation capacity is positive (i.e. leading eigen-
value λ > 0). More concretely, the metapopulation capacity is
bounded below by the minimum row sum and bounded above
by the maximum row sum (i.e. mini

P
j Mij � l � maxi

P
j Mij).

This bound has been previously noted in studying metapopula-
tion capacity [9]. This is the best general estimate we have
for positive matrix (see ch. 8 of [29]). However, this estimate is
not ideal for inference, as we need to infer the ‘outlier’
behaviour of row sums.

If we further assume that the area dependence rate of disper-
sal ω and extinction rate e are equal (most studies assume both to
be 1), then, in addition to positivity, M is also symmetric (i.e.
Mij =Mij). Then the Cauchy Interlace Theorem guarantees that
M always has a larger leading eigenvalue than any of its princi-
pal sub-matrices [30]. In ecological language, this theorem means
that a metapopulation always has a higher capacity than any of
its sub-metapopulations.

Furthermore, for a symmetric positive matrix, metapopula-
tion capacity can be equivalently expressed as λ =maxx≠0
(xTMx/xTx) [31]. We can consider the vector x as the weights
of matrix elements. For example, if we assign equal weight to
each element (i.e. x = (1,…, 1)), we see the metapopulation
capacity is bounded below by l � nM, where M represents the
average of the connectivity matrix. This lower bound has been
previously noted in studies of metapopulation capacity [28].
This lower bound (nM) is better for inference compared to the
previous bound (mini

P
j Mij), as we only need to estimate the
‘average’ behaviour of row sums. The powerful central limit the-
orem makes it easy and robust to estimate the lower bound (nM).
Specifically, as long asMij are from some probability distribution,
any distribution, we can estimate its mean.

We can further improve the bound if we viewMij as a random
symmetricmatrix. That is,weassume that the off-diagonal elements
Mij in the upper triangle are i.i.d.with varianceσ2, and the lower tri-
angle is identical to the upper triangle. Note that this assumption is
not valid whenwe have heterogeneity of the patch areaAi (asAe

iA
v
j

generally does not equal to Ae
jA

v
i ). With this assumption, the

expectation of metapopulation capacity follows [32]:

l ¼ nMþ s2

M
þO

1ffiffiffi
n

p
� �

, ð2:5Þ

where Oð1= ffiffiffi
n

p Þ denotes that the error of the estimate decreases
fast with the number of total patches. In addition, the variance of
the mean metapopulation capacity is bounded by 2σ2, which is
independent of the number of patches. These features make
the inference of metapopulation capacity from an incomplete
survey feasible.

(c) Analytic argument on patch importance
Recall that the patch importance is given by the eigenvector
corresponding to the largest eigenvalue (i.e. metapopulation
capacity) of the connectivity matrix. We denote the eigenvector
as τ and the importance of patch i as τi. At first glance, predicting
patch importance appears to be more difficult than predict-
ing metapopulation capacity. One obvious obstacle is, while
metapopulation capacity is a global summary of all patches,
patch importance is different for each patch. Thus, instead of
the quantitative value, we focus on the rank of patch importance
among all patches (i.e. whether patch i has a higher importance
than patch j).

We assume that the connectivity matrix M is symmetric.
Importantly, the leading eigenvector is related to the eigen-
values of the connectivity matrix (whole metapopulation) and
its submatrix (sub-metapopulation). Specifically, we have the
eigenvector-eigenvalue identity [19]:

ti /
Yn�1

k¼1

(lðMÞ � lk(Mi)), ð2:6Þ

where λ(M ) is the metapopulation capacity, Mi denotes the con-
nectivity matrix corresponding to the metapopulation without
patch i and λk(Mi) denotes the kth highest eigenvalue of the
matrix Mi.

We then additionally assume that the connectivity matrix M
is a random matrix. While we are not aware of any analytic
result on the full distribution of λk(Mi), the distribution is
almost centred around its median. Specifically, the probability
of λk(Mi) deviates from the median decreases super-exponentially
[33]. This provides a heuristic justification of why the relative
rank of patch importance τi is conservative. Importantly, the con-
served structure renders the inference of patch importance easier
than that of metapopulation capacity, as we do not need to know
the total number of patches.

(d) Statistical inference
We provide two different methods to infer the population
capacity from sample or survey representing a subset of habitat
patches. The first method is regression-based inference. Suppose
that we have sampled k patches. We bootstrap resampling with
different number of patches (e.g. from 2 to k). We calculate the
sub-metapopulation capacity for each sample. We then make
use of regression methods, including linear regression and gener-
alized additive models, to predict the metapopulation capacity
with the number of patches.



Table 1. This table summarizes the parameters for the full-factorial simulations. For patch area, we have considered two probability distributions, normal and
uniform. For patch location, we considered six distributions [34]. The first distribution is a regular grid. The second and third are Poisson processes on
homogeneous and inhomogeneous landscapes, respectively. These two distributions describe random locations. The fourth and fifth are Neyman–Scott point
process on homogeneous and inhomogeneous landscapes, respectively. These two distributions describe clustered locations. The last one is hard clusters, where
the borders between patches are evident and patches are strictly located within a boundary. Electronic supplementary material, appendix B, illustrates these six
distributions of patch locations. For dispersal dependency ω of area, we consider positive, null and negative values. All scenarios are observed in empirical
studies [25]. For extinction dependency e of area, we consider only null and positive values. For dispersal kernel f (dij) of non-zero patch distance, we consider
three different kernels: exponential kernel [7], Gaussian kernel, and non-monotonic kernel [28]. Electronic supplementary material, appendix C, illustrates these
three kernels. For self-colonization f (0), we considered both existence of self-colonization or not, as both are present in the literature [7,26].

patch area Ai detail parameter value

normal distribution normal(1, σ) σ = 0.1, 0.3

uniform distribution uniform(0, b) b = 1, 10

patch location

regular grid regular grid points

random location Poisson point process

inhomogeneous random location inhomogeneous Poisson point process

homogeneous clusters Neyman–Scott point process

inhomogeneous clusters inhomogeneous Neyman–Scott point process

hard cluster

area dependence parameter

dispersal dependency ω ω =−1, 0, 1
extinction dependency e e = 0, 0.2, 1

dispersal kernel f (dij)

Gaussian kernel for dij > 0 expð�ðd2ij=2j2ÞÞ ξ = 0.1, 1

exponential kernel for dij > 0 expð� dij
jÞ ξ = 0.1, 1

non-monotic kernel for dij > 0 ðGðaþ bÞ=GðaÞGðbÞÞðdij=jÞa�1ð1� ðdij=jÞÞb�1 ξ = 0.1, 1, α = β = 2

self-colonization f (0) 0,1
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The second method is analytic-based inference. This method
is inspired by the analytical argument for metapopulation
capacity. We can decompose the connectivity matrix as
M ¼ A�D, where Aij ¼ Ae

iA
v
j and Dij = f (dij/ξ), and � is the

Hadamard product of the matrix. The matrix D closely satisfies
the assumption of a random matrix (off-diagonal elements Dij

are independent). We can thus use the asymptotic estimate
(equation (2.5)) with correlation for dependency. The effect of
dependency caused by A can be corrected by the ratio between
the true and inferred estimate of the largest eigenvalue of
A. Mathematically, we have the following analytically derived
estimate:

l̂ðMÞ ¼ nD � Aþ s2
A

A
þ s2

D

D
þ s2

Ds
2
A

D � A

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

estimate under independency

� lðAÞ
kAþ s2

A=A|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
correct for dependency

, ð2:7Þ

where n is the total number of patches, k is the number of
sampled patches, D

2
and s2

D are the sample mean and variance
of the off-diagonal elements of D, A

2
and s2

A are the sample
mean and variance of the off-diagonal elements of A and λ(A)
is the largest eigenvalue of the matrix A. Derivation of the
estimate (equation (2.7)) can be found in electronic supplemen-
tary material, appendix A.

To infer the patch importance, we bootstrap resampling with
different number of patches from the sampled patches. We calcu-
late the patch importance τi for each patch. We normalize the
patch importance by the number of patches k in a resample
(i.e. τ→ kτ). The rational is that the null expectation of patch
importance with k patches would be 1/k. We then compute the
average patch importance kt from the resamples. Details on
the regression-based method can be found in electronic
supplementary material, appendix A.
(e) Full-factorial simulation
To validate our statistical framework, we consider a factorial com-
bination of metapopulation configurations. Specifically, we
consider combinations of different dispersal kernels, distributions
of patch area, distributions of patch location, the existence of self-
colonization, rates of extinction rates and rates of area dependence
of dispersal. This allows us to explore the state-of-the-art modelled
complexity of metapopulation configurations. Table 1 presents a
summary of the simulation combinations. Electronic supplemen-
tary material, appendix B, illustrates the different distributions of
patch location, and electronic supplementary material, appendix
C, illustrates the different dispersal kernels. Importantly, most
simulation combinations would violate the simplifying assump-
tions in our analytic arguments. For example, when patch areas
are heterogeneous, or when the dispersal dependency rate ω
does not equal to the extinction dependency rate e, or when
patches are not distributed with a homogeneous point process.

We then quantify the prediction accuracy of our statistical
approach. For metapopulation capacity, we calculate the quanti-
tative difference between the predicted and the true capacities
ðl̂� lÞ=l. For patch importance, to assess how well the relative
order of patch importance is preserved, we calculate the
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Figure 2. Illustration of inference of metapopulation capacity. (a) A simulated metapopulation with patches located on an inhomogeneous landscape. It has in total
100 patches, where 50 patches are sampled (blue circles) while the other 50 patches are unsampled (white circles). We bootstrap the sampled 50 patches to get an
ensemble of sub-metapopulations with different patch numbers. (b) The sampled and the predicted metapopulation capacities. From the sampled metapopulation
capacities (blue solid points), we predict the capacity of the whole metapopulation (regression line). The predicted capacity (the end of the regression line) is close to
the true capacity of the whole metapopulation (orange point). (c) The sampled patch importance and their relative ranking as increasing numbers of patches are
sampled up to 50 patches (blue lines) and the final patch ranking for 100 patches (red points). (Online version in colour.)
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Spearman’s rank correlation between the predicted and true
importance cor½ðt̂1, . . . ,t̂kÞ, ðt1, . . . ,tkÞ�.

( f ) Empirical data
We used a dataset of a metapopulation of the endangered
mangrove hummingbird (Amazilia boucardi) [15]. The metapopula-
tion has 403 patches, and the total habitat area is 351 km2. The
patches are identified with a 30 m resolution map of global man-
grove habitat [35]. The areas and locations of the patches are
measured with a high precision. Appendix D in the electronic sup-
plementary material provides the distribution of patch area and
pairwise patch distances in this metapopulation.

Huang et al. [15] provided additionally the values of the par-
ameters of the metapopulation dynamics. The area dependence of
dispersal ω is set to be 1, and the area dependence of extinction ω
is set to be 0.5. There exists self-colonization within a patch. The
empirically inspired dispersal kernel is the log-sech distribution:

f
dij
j

� �
¼ 2

p
arctan

j

dij

� �b�1
" #

, ð2:8Þ

where the characteristic dispersal distance ξ is set to be 317m,
and the distribution tail thickness β is set to be 1.77. However,
there are uncertainties on these parameters. For example, the
values of ξ and β are derived from field data on Amazonian
passerine birds instead of directly from the mangrove humming-
bird [36]. To account for the uncertainty on the parameters
[15,37], we additionally consider the factorial combination of the
parameter values: ξ ranges from 100m to 5000m, β ranges from
1 to 2, ω ranges from 0.5 to 1.5 and ω ranges from 0.5 to 1.5,
and whether self-colonization exists.

We then vary the number of sampled patches to test how the
sampling effort affects the predictability. Specifically, the percen-
tage of sampled patches from 0.1 (i.e. one tenth of the patches are
sampled) to 0.5 (i.e. half of the patches are sampled).
3. Results
We first show an example to illustratewhy inference is possible
(figure 2). We simulate a metapopulation with 100 patches
in a given landscape. We sample only 50 of all patches. We
resampled the sampled 50 patches, which provided an ensem-
ble of sub-populations with patch number ranging from 2 to
50. Focusing on metapopulation capacity, we observe a linear
structure of how capacity grows with increasing patch num-
bers sampled. This linear structure is consistent with our
analytic arguments. Then by focusing on patch importance,
we observe a conserved structure of relative rank with increas-
ing patch numbers sampled. This conserved structure is also
consistent with our analytic arguments. These two structures
are the inherent constraints of metapopulation dynamics,
and they allow us to infer metapopulation persistence with a
substantial proportion of unsampled patches.

We then validate our statistical approach using the var-
ious metapopulation configurations (figure 3). We first
focus on metapopulation capacity. The analytic-based estima-
tor has an average prediction error of −0.025 with 95%
confidence interval (–0.17, 0.08) (figure 3a). In comparison,
the regression-based estimator has an average error of 0.005
with 95% confidence interval (−0.21, 0.24) (figure 3b). Thus,
the analytic-based estimator provides a conservative predic-
tion with lower variance, while the regression-based
estimator provides an unbiased prediction with higher var-
iance. We then focus on patch importance (figure 3c). The
predicted rank of patch importance has a high correlation
with the true rank. The median of the correlation is 0.94
with 95% confidence interval (0.33, 1).

We finally applied our statistical approach to the empirical
metapopulation of the mangrove hummingbird (figure 4). We
predictmetapopulation capacitywith different sampling efforts
using the analytic-based estimator (figure 4a). The prediction
error of metapopulation capacity decreases and saturates with
the sampling effort. Specifically, the mean prediction error
decreases from −0.05 when sampling 10% patches to −0.007
when sampling 50% patches. This is consistent with simulation
data. Results are qualitatively similar when using the
regression-based estimator (electronic supplementary material,
appendix D). We then predict patch importance using different
sampling efforts (figure 4b). In contrast to the normal-like
distribution of prediction errors on metapopulation capacity,
we observe a two-mode distribution on patch importance.
One mode is centred close to a correlation of 1. Specifically,
the proportion of samples with correlation higher than
95% increases from 20% when sampling 10% patches to 30%
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when sampling 50% patches. Another mode is a normal-like
distribution. Specifically, the mean of samples with correlation
less than 95% increases from0.64 to 0.81. In summary, to predict
metapopulation capacity requires less sampling effort than to
predict patch importance.
4. Discussion
Sampling patches to assess the state of a metapopulation is
costly in the field. This logistical constraint prevents a
wider adoption of the elegant and rigorous framework of
metapopulation persistence in conservation biology. To effec-
tively monitor metapopulation persistence, we need a quick
and yet rigorous approach to assist with incomplete surveys
of patches. Our study makes a first step in filling this gap
between theory and empirical studies. We provide a robust
statistical approach to infer metapopulation persistence
when only a small proportion of patches are sampled. This
statistical approach is justified with analytic arguments and
validated with full-factorial simulations and an analysis of
an empirical metapopulation.

That we can infer metapopulation persistence from an
incomplete survey is not a trivial result. What makes the infer-
ence possible is that the special structures in the connectivity
matrix are constrained by the metapopulation dynamics. This
property is known as coarse-grainability in physics [38]. Specifi-
cally, the inherent linear structure of metapopulation capacity
and conserved structure of patch importance (figure 2). In
contrast, other seemingly similar questions in ecology do not
have this property, which renders inference with incomplete
data difficult, if not impossible. Technically, to infer metapopu-
lation capacity is to infer the leading eigenvalue from the
connectivity matrix. By replacing the connectivity matrix
with other matrices, the leading eigenvalue would have other
fundamental ecological interpretations. For example, the lead-
ing eigenvalue of the Jacobian matrix of community dynamics
determines its resilience to perturbations [39,40], while that of
the Leslie matrix of age distribution determines the long-term
population growth [41]. However, the leading eigenvalue is
not coarse-grainable for neither Jacobian nor for Leslie
matrix. For Jacobian matrix, while many works have derived
the stability criteria for random Jacobian matrix [42–44], the
system is not coarse-grainable. To see this, adding a new
species can increase or decrease community stability (as there
is no sign constraint on the Jacobian matrix), while adding a
new patch into a connectivity matrix never decreases metapo-
pulation capacity (as all elements are non-negative in the
connectivity matrix).

Our statistical approach offers some guideline of patch
sampling in the field. The success of our approach fundamen-
tally requires to that we conduct an unbiased survey of patches
or a surveywith a knownbias. The bias here refers to surveys of
larger and/or occupied patches, which are sampled with
higher probability than other patches. This requirement is not
a unique condition of our approach, but general for almost
all prediction purposes [45,46]. For example, the empirical
sampling bias in a large-scale survey is systematic but quite
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small; however, 2.3 million samples with this small bias would
have equivalent statistical power of 400 unbiased samples [47].
Unfortunately, biased sampling is common in empirical studies
[48,49]. We often have no idea how biased the sampling is, as
they were not originally collected for the purpose of inference
we describe here. A silver lining, though, is that sampling bias
is more problematic in larger datasets (an empirical metapopu-
lation usually has less than a couple of hundred patches). We
simulated how the level of sampling bias affects our prediction
ability in electronic supplementarymaterial, appendix F.While
this can provide an ad hoc estimation of prediction uncertainty,
we believe that a better solution is to adopt a protocol of
random sampling or survey. After all, sampling quality
trumps sampling quantity for inference purposes. A simple
protocol is: for a homogeneous landscape, several small areas
are randomly surveyed thoroughly and extrapolated to the
whole landscape; and for a heterogeneous landscape, survey
locations are randomly chosen within the whole landscape.
A mix of the two sampling protocols may be preferred in land-
scapes with unknown heterogeneity. We suggest further
studies on more sophisticated sampling protocols [50].

To link our study to practicalmetapopulation conservation,
another key issue is the practical difficulty in locatingpatches in
metapopulation surveys. Metapopulation models typically
assume that patches have ‘hard’ boundaries, which separate
habitable and non-habitable terrains. While some methods
are available to detect such boundaries in empirical landscape
[51–53], finding such boundary is still a daunting issue [54–57].
An alternative approach is to consider individual pixels instead
of a collection of patches [58–61]. Nonetheless, the lack of a
clear boundary renders the patch area, an often ill-defined con-
cept in practice. The silver lining, though, is that the patch area
is just a proxy for how habitable the patch is (which we called
patch quality when we introduced the general model of meta-
population dynamics; equation (2.1)). Patch quality can be
inferred without the need of detecting the patch boundaries.
For example, we infer the patch quality from the counted
number of individuals per patch [62].

Our study has the opposite focus to many other studies
on metapopulation capacity. We focus on inference with
unsampled patches, while previous works havemostly focused
on habitat destruction or degradation by removing sampled
patches [10,11,63,64]. Our analytic arguments apply as well to
removing patches (a caveat though is that we would expect a
larger prediction error due to a smaller patch number; see elec-
tronic supplementary material, appendix E). However, in this
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case, as we already have the information (i.e. thewhole connec-
tivity matrix), direct simulations might be better suited for this
task than our analytic arguments.

Our results increase our understanding on the effects of
heterogeneity on metapopulation persistence. For example,
equation (2.7) shows that a higher variance in patch distance
always increases mean metapopulation capacity, while a
higher variance in patch area or quality has context-dependent
effect on mean metapopulation capacity. Interestingly, the
effects of variance in patch distance agree with the previous
results on the lower bound of metapopulation capacity, while
the effects of variance in the patch area or quality do not [28].

A potential extension of our approach is to consider
other models of metapopulation dynamics. In our study, we
have adopted the deterministic metapopulation dynamics
(equation (2.1)). An alternative approach is individual-based
models of spatially structured populations [65–67]. Earlier
studies have suggested strong links between these two differ-
ent modelling approaches [68]. Another potential extension is
to consider metapopulation dynamics with habitat modifi-
cation [69]. Habitat modification has the potential to
increase metapopulation persistence, although it is yet
unclear how to quantify metapopulation capacity and patch
importance in this model setting.
5. Conclusion
The metapopulation concept is central to conservation
science. It is used to predict the consequences of habitat
loss for species persistence in highly fragmented landscapes
[14,70,71]. It is also used in the assessment of threatened
species and to guide planning for habitat connectivity and
restoration [26,72,73].

Our findings have significant implications for conservation
organizations needing to rapidly survey metapopulations and
assess their long-term persistence with limited financial and
logistical means. Being able to make robust inference about
persistence from a fraction of the total habitat network offers
the potential for rapid monitoring for metapopulation status.
We recommend widespread testing of our methods in the lab
and in the field to examine their robustness.
Data accessibility. The dataset of the endangered mangrove humming-
birds (Amazilia boucardi) is available from https://doi.org/10.1111/
cobi.13364. The source code to produce the results is available on
GitHub at https://github.com/clsong/ReproduceMetaCap.

The data are provided in electronic supplementary material [74].
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