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S1 Association between species abundance and generalism

We used the degree (number of interacting partners) and the normalized degree (the percentage of
interacting partners over all locally available partners) to measure generalism. For both metrics, we
found a strong correlation between generalism and abundance in animal species, and a weak but
significant correlation in plant species. These correlations only change subtly after we normalize
the distributions (Figure A in S1 Text).

Another widely adopted metric is known as the species-level generalisation index g, which is
based on the degree of specialization d’' [5]. Specifically, following Fort et al. [8], the species-level
generalisation index g is defined as 1 — d’/d],., where d’ quantifies the derivation from a random
sampling of all available able interaction partners, and d . is the maximum possible value of d’
given the constraints. We used the R package ‘bipartite’ to compute the generalisation index g [6].
We found that the generalisation index g has a null correlation with species abundance in both

animal and plant species (Figure A in S1 Text).
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Fig. A. Pearson correlation between abundance and different measures of species generalism. The
left panels show animal species while right panels show plant species. The lower panels show
the original data while while the right panel shows the transformed unskewed data. The y axis
shows the three measures of species generalism. The x axis shows the Pearson correlation between
abundance and generalism. The points denote the mean estimated Pearson correlation and the
error bar shows the 95% confidence interval.
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S2 Null model analysis of Fort et al’s method
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Fig. B. The original method in Fort et al. [8] is biased by uneven distributions. Panel (A): y is
caused by z with a linear relationship plus some noise. x follows a uniform distribution ranging
from 0 to 1. The specific formalism is in Eqn. (1). The color denotes the point density: the more
yellow, the point cloud has more points. Panel (C): y is caused by = with a nonlinear relationship
plus some noise. x again follows a uniform distribution ranging from 0 to 1. The specific formalism
is in Eqn. (2). The original method in Fort et al. [8] compares the proportion of points with large
2 and small y (indication of y being the cause) with the proportion of points with small x and
large y (indication of x being the cause). Panel (B): Applying this method to the data in Panel
(A), it correctly identified that x is the cause. Panel (D): Applying this method to the data in
Panel (C), it incorrectly identified that y is the cause. The reason behind the phenomena is that
the non-linear causal relationship skews the distribution of y generating more small y values, which
increases the proportion of points with large x and small y.
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Fig. C. Null model analysis of the refined method of Fort et al. (2016). In all analysis, we have
that X causes Y. Specially, Y = f(X) + N(0,1), where N(0, 1) represents the standard normal
distribution. The x axis shows the functional form of the nonlinear causal relationships. The left
panel shows the polynomial functional forms, while the right panel shows the rational functional
forms. These functional forms represent a range of possible functional responses in ecological
literature [2]. The y axis shows the proportion of the two categories in simulated ensembles. The
refined method identified the correct cause and effect in most cases.
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S3 Data distribution
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Fig. D. Distribution of original data. The x axis shows the species generalism while the y axis
shows the species abundance. Panel (A) shows hummingbird species with the degree as the measure
of generalism. Panel (B) shows hummingbird species with the normalized degree as the measure of
generalism. Panel (C) shows plant species with the degree as the measure of generalism. Panel (D)
shows plant species with the normalized degree as the measure of generalism.
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Fig. E. Q-Q plots of abundance in log scale. Q-Q plots show that the abundances of both
hummingbird species and plant species largely follow log-normal distributions
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Fig. F. Q-Q plots of generalism in log scale.
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Fig. G. Transformed data with minimal skewness.
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The original data has high skewness, which

could bias the causal discovery methods. We transform the distribution (keeping the ranks of the
data fixed) to a normal one with minimal skewness [10].
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S4 Analysis with the refined Fort et al’s method
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Fig. H. The x axis shows four species types: being rare and specialist concurrently, being rare
and generalist concurrently, being abundant and specialist concurrently, and being abundant and
generalist concurrently. The y axis shows the mean proportion of each species type. Each point
denotes a different empirical plant-hummingbird community. The left axis shows the hummingbird
species while the right axis shows the plant species. As expected, the proportions of rare-specialist
species and those of abundant-generalist species are high. The proportions of abundant-specialist
species are generally higher than those of rare-generalist species (p values are shows in the figure).
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Fig. I. Figure H shows the statistical analysis without considering the proportions are paired. Here,
we analyze the proportions of abundant-specialist species and those of rare-generalist species as
paired samples. We found again a significant difference that indicates generalism as the cause.
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S5 Analysis of causal associations with additional network prop-
erties
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Fig. J. Same as Figure 4 except we replace nestedness with two other network properties: con-
nectance (left column) and modularity (right column). The connectance is defined as the number
of realized interactions over the number of all possible interactions. The modularity is defined
as Newman’s modularity [9], and its value is computed from R package bipartite [7]. The
corresponding Pearson correlation and its p value are shown in the figure. None of the correlations
is statistically significant.
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Fig. K. Same as Figure J except we remove the outliers. The outliers are removed if its Cook’s
distance is larger than 4/# of points. The key qualitative difference from Figure J is that Modularity
is now statistically significantly associated with the evidence strength on causal direction.
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Fig. L. Same as Figure 4 except we replace nestedness with motif frequencies. The horizontal axis
shows the frequency of motifs in the bipartite networks, which is computed from the R package
bmotif [14]. Each column corresponds to a motif, and it is labelled according to Simmons et al. 13.
The corresponding Pearson correlation and its p value are shown in the figure.
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Fig. M. Same as Figure L except we remove the outliers. The outliers are removed if its Cook’s
distance is larger than 4/# of points.
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Fig. N. Same as Figures J and L except we control for the effects of connectance and network size.
Specifically, we perform linear regression Im(diff ~ network property + connectance + network size),
where network property represents either modularity or motif frequencies. The partial residuals are
plotted. Overall, the qualitative results do not differ from previous analysis.
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Fig. O. Same as the first column of Figure J except we control for the effects of network size.
Specifically, we perform linear regression Im(diff ~ connectance + network size). The partial residuals
are plotted. Overall, the qualitative results do not differ from previous analysis.
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S6 Analysis of causal associations with temperature

We have gathered the environmental conditions for a subset of networks (n = 14) from the public
repository Terraclimate [1]. Following the methods in Song et al. [15, 16], we confirmed a strong
association between combined nestedness and local temperature (Figure P in S1 Text).

2- Tempgrature
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Fig. P. Using a Principal Component Analysis (PCA), the figure shows the two principal components
for the four variables investigated: species richness (the geometric mean of plants and hummingbirds),
connectance (the proportion of realized interactions among all possible interactions), nestedness
statistic and temperature. The arrows correspond to the four associated eigenvectors, and each
small dot corresponds to one of the 25 observed networks.
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Fig. Q. Using a Principal Component Analysis (PCA), the figure shows the two principal com-
ponents for the four variables investigated: species richness (the geometric mean of plants and
hummingbirds), connectance (the proportion of realized interactions among all possible interactions),
nestedness statistic and temperature, and the evidence strength of generalism being the cause. The
arrows correspond to the five associated eigenvectors, and each small dot corresponds to one of the
25 observed networks.

We then used a model-free, nonparametric measure of variable association [3]. We used the R
package FOCI [4]. Figure R in S1 Text confirms the findings in Figure 4.
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Fig. R. Association between causal direction with structural and environmental context. The left
panel shows the structural context (measured as the level of nestedness). The z axis shows the two
species categories, hummingbird and plant. The y axis shows the association between the level of
nestedness and the causal directions that generalism being the cause [3]. The causal directions in
both hummingbirds and plants are both positively correlated with the level of nestedness, albeit
plants have a stronger correlation. The right panel shows the environmental context (measured
as the mean temperature). The y axis shows The y axis shows the association between the mean
temperature and the causal directions that generalism being the cause [3]. The points denote the
mean temperature from year 1958-2020 [1]. The causal direction in hummingbirds are positively
correlated with the mean temperature, while the direction in plants has null correlation. These
results confirm the finding in Figure 4.
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S7 Analysis with additive noise model and information-geometric
inference

S7.1 Additive noise model

We used a generalized additive models with integrated smoothness estimation [18] from the R
package mgcv [19]. We used a Gaussian family. In total, we have 228 data points for hummingbirds
and 594 data points for plants. We used bootstraps 100 times to estimate the uncertainty.

Figure S in S1 Text shows the adjusted R? in the generalized additive models. The models generally
have a higher R? when generalism is the cause compared to that when abundance is the cause.
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Fig. S. Adjusted R? in additive noise models. The x axis shows the two categories of models: one
with abundance as the cause (i.e., predictor in the regression), while the other with generalism as
the cause. The y axis shows the adjusted R? in the system. The points are from 100 boostraps.

We then used the Hilbert Schmidt Independence Criterion to test the independence of the residuals
with the variables [11]. We used the R package dHSIC [12]. We used the default method with the
Gaussian kernel and gamma approximation based test.
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Fig. T. P values in additive noise models. The x axis shows the two categories of models: one
with abundance as the cause (i.e., predictor in the regression), while the other with generalism as
the cause. The y axis shows p values between the predictor with the residuals in the system. The

points are from 100 boostraps.

S7.2 Information-geometric inference
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Fig. U. Estimation of empirical entropy in information-geometric inference. The = axis shows
the two categories of models: one with abundance as the cause (i.e., predictor in the regression),
while the other with generalism as the cause. The y axis shows entropy. The points are from 100

boostraps.
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S8 Analysis of the dataset of reef fishes

Figure V in S1 Text confirms a positive correlation between species abundance and generalism in
reef fishes [17].

tswgent(48) = 3.31, p = 0.002, Tpearson = 0.43, Clgs, [0.17, 0.63], Npairs = 50
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10ge(BFo1) = —3.13, Phonon = 0.40, Cliey [0.21, 0.58], 123 = 1.41
Fig. V. Correlation between species generalism and abundance in reef fishes.

The additive noise model shows that species generalism is more likely to be cause (Table A).

Table A: Additive noise model
p value adjusted R?

generalism 0.23 0.28
Abundance 0.00 0.27

The information-geometric inference also shows that species generalism is more likely to be cause
(Table B).

Table B: Empirical entropy of marginal distribution

Entropy
generalism 1.62
Abundance 1.02
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