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A central theme in ecological research is to understand how species interactions contrib-
ute to community dynamics. Species interactions are the basis of parametric (model-
driven) and nonparametric (model-free) approaches in theoretical and empirical work. 
However, despite their different interpretations across these approaches, these measures 
have occasionally been used interchangeably, limiting our opportunity to use their dif-
ferences to gain new insights about ecological systems. Here, we revisit two of the most 
used measures across these approaches: species interactions measured as constant direct 
effects (typically used in parametric approaches) and local aggregated effects (typically 
used in nonparametric approaches). We show two fundamental properties of species 
interactions that cannot be revealed without bridging these definitions. First, we show 
that the local aggregated intraspecific effect summarizes all potential pathways through 
which one species impacts itself, which are likely to be negative even without any con-
stant direct self-regulation mechanism. This property has implications for the long-held 
debate on how communities can be stabilized when little evidence of self-regulation 
has been found among higher-trophic species. Second, we show that a local aggregated 
interspecific effect between two species is correlated with the constant direct interspecific 
effect if and only if the population dynamics do not have any higher-order direct effects. 
This other property provides a rigorous methodology to detect direct higher-order effects 
in the field and experimental data. Overall, our findings illustrate a practical route to gain 
further insights about non-equilibrium ecological dynamics and species interactions.

Keywords: higher-order interactions, interaction matrix, Jacobian matrix, model-
driven, model-free, non-equilibrium dynamics
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Forum

Community ecology is built upon the concept of species interactions. Traditionally, 
parametric and nonparametric approaches to study community dynamics have considered 
different measures and interpretations of species interactions. That is, species interactions 
are measured as constant-direct and local-aggregated effects within the parametric and 
nonparametric approaches, respectively. It has remained unclear, however, under what 
conditions parametric and nonparametric views of species interactions tell a similar story, 
and what can be learned when they do not coincide. In this line, here we have provided a 
bridge between these two approaches (measures) and illustrated how to use their differences 
to gain new insights about nonequilibrium community dynamics.
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Introduction

Community ecology are built upon the idea that species inter-
act either directly or indirectly with other species (Abrams 
1987, Thompson 2005, Morin 2009, Vellend 2016). Indeed, 
a central theme in ecological research is to understand how 
species interactions contribute to community dynamics (May 
1972, Pimm 1982, Allesina and Tang 2012, Fukami 2015, 
Saavedra et al. 2017, Chesson 2018). Even macro-ecological 
studies that do not explicitly model species interactions are 
built upon the idea of an existing balance among species inter-
actions (Hubbell 2005, Harte 2011, Staniczenko et al. 2017). 
Thus, ever since Odum (Odum and Barrett 2005), most ecol-
ogists classify species interactions not by their mechanisms, 
but according to the effects produced on the growth rate of 
populations (Abrams 1987 for an extended discussion on this 
topic). Yet, this simple definition has different measures and 
interpretations across theoretical and empirical studies (Case 
2000), making necessary to understand how and when these 
measures can be linked.

In empirical and theoretical research, the effect of species 
interactions has been measured following parametric (model-
driven) and nonparametric (model-free) approaches (Sugihara 
1994, Turchin 2003). While the parametric approach has been 
the cornerstone of quantitative ecology (Kingsland 2015) the 
nonparametric approach has been increasingly adopted in 
empirical studies (Deyle et al. 2016, Ushio et al. 2018, Cenci 
and Saavedra 2019, Bray and Wang 2020, Karakoç et al. 
2020, Ushio 2020, Yu et al. 2020). To explain the differences 
between the two approaches, we define them using the most 
general population dynamics of S interacting species in the 
form of continuous ordinary differential equations (the case 
for discrete difference equations is similar, Case 2000),
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where Ni is the abundance (or biomass) of species i, and fi is 
the per capita growth rate of species i.

The parametric approach typically measures species 
interactions as constant direct effects (mechanistic or 
phenomenological) between species (Case 2000, Song et al. 
2020), and completely relies on knowledge about the 
governing population dynamics. The general formalism in 
the parametric approach partitions the general population 
dynamics (Eq. 1) as
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with both pairwise and higher-order terms. The pairwise 
formalism of population dynamics has been the basis of 
this approach. The pairwise formalism ignores the higher-
order terms and focuses only on the pairwise terms, where 
ri represents the intrinsic growth rate of species i (no density 

dependency), aij represents the constant, direct, intraspecific 
(if i = j) and interspecific effect (if i ≠ j), while si(Ni) and 
gij(Ni,Nj) represent the functional form of the intraspecific 
and interspecific direct effects, respectively. These constant 
direct effects aij can be the result of indirect mechanisms 
depending on the level of resolution of the model (MacArthur 
and Levins 1967, Abrams 1987), while the functional forms 
gij(Ni,Nj) are not restricted to be linear and can incorporate 
non-additive effects (Tilman 1982, Billick and Case 1994, 
Letten and Stouffer 2019). A classic example of the pairwise 
formalism is the Lotka–Volterra (LV) dynamics (Lotka 1926, 
Volterra 1926), where si(Ni) = Ni, gij(Ni,Nj) = Nj. The matrix 
A = {aij} is called the interaction matrix, encoding the strength 
of pairwise, constant, direct effects (note these effects can be 
non-additive, Billick and Case 1994). Regardless of which 
form of functional responses is used, the sign pattern of the 
interaction matrix A is usually fixed and interpreted as the 
type of pairwise direct effect, such as: mutualism, competi-
tion, predation or null (Abrams 1987, Callaway et al. 2002, 
Chamberlain et al. 2014, Song et al. 2020).

Despite the popularity of the pairwise formalism, the 
parametric approach can also be applied to a higher-order 
formalism of the general population dynamics (Eq. 2; Billick 
and Case 1994, Kleinhesselink et al. 2019). Higher-order 
effects correspond to constant direct effects among more than 
two species (which is fundamentally different from other 
definitions such as indirect effects or non-additive effects, 
Billick and Case 1994). For example, focusing on the higher-
order terms in Eq. 2, bijk represents the constant, direct, triple-
wise effect. Similarly, hijk(Ni,Nj,Nk) represents the functional 
form of the triple-wise direct effect among species i, j and k 
– representing the constant change in the per capita growth 
rate of species i under a small change in density of species 
j and k (O’Dwyer 2018, Letten and Stouffer 2019). Other 
higher-order direct effects (such as quadruple-wise effect) 
can be similarly defined (Bairey et al. 2016). Note that the 
parametric approach, regardless of the specific formalism, can 
be applied under the assumptions of equilibrium and non-
equilibrium dynamics (Case 2000).

In turn, the nonparametric approach typically measures 
species interactions as the local (state-dependent) aggre-
gated (direct and higher-order) effects between two species. 
Different from the parametric approach, the nonparametric 
one does not assume any particular governing population 
dynamics (Sugihara and May 1990, Ye et al. 2015). Because 
the local aggregated effect counts all the pathways (including 
direct and higher-order effects) at a given point in time, it 
can only be defined pairwise (Deyle et al. 2016, Cenci and 
Saavedra 2018b, Ushio et al. 2018). That is, the nonpara-
metric pairwise interaction between two species is measured 
as the change in the growth rate of species i under a small 
change in density of species j. Formally, this can be written as
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where the Kronecker delta δij is 1 if i = j, 0 otherwise. The 
matrix J = {Jij} is called the Jacobian matrix. Similarly, this 
approach can be applied to both equilibrium (May 1972, 
Allesina and Tang 2012) and non-equilibrium dynam-
ics (Sugihara 1994, Ushio et al. 2018, Cenci and Saavedra 
2019). Note that under equilibrium dynamics, the Jacobian 
matrix has also been called the community matrix (Levins 
1968, May 1972, Case 2000, Novak et al. 2016).

Both measures have their own strengths and weaknesses: 
within parametric approaches, measures have a mechanistic 
or phenomenological interpretation of a direct effect between 
species, but the magnitude and dimension of such parametric 
measures are model-dependent (Cenci and Saavedra 2018a, 
AlAdwani and Saavedra 2019, Letten and Stouffer 2019). 
Instead, within the nonparametric approach, measures can 
be estimated directly from data (such as time series of spe-
cies abundance) with statistical methods, but they are often 
hard to be biologically interpreted (Sugihara and May 1990, 
Ushio et al. 2018, Cenci et al. 2019). Additionally, regard-
less of the specific methods, the two approaches hold differ-
ent conceptualizations about how species interactions can be 
decomposed: within the parametric approach, measures can 
be decomposed into intraspecific (the effect of a species on 
itself ), interspecific (the effect of a species on another) and 
higher-order interactions (the effect of two or more species 
on another). In contrast, within the nonparametric approach, 
measures can only be decomposed into intraspecific and 
interspecific interactions (Deyle et al. 2016, Cenci and 
Saavedra 2018b, Ushio et al. 2018). Yet, it remains unclear 
under what conditions parametric and nonparametric views 
of species interactions tell a similar story, and what can be 
learned when they do not coincide.

Importantly, even in equilibrium dynamics, the subtle 
but central differences in the measure of species interactions 
between these two approaches have sometimes been a cause 
of confusion in the literature (Lawlor 1980, Abrams 1981). 
Take the complexity–stability debate as an example, one of 
the most controversial topics in theoretical and community 
ecology (May 1972, McCann 2000, Ives and Carpenter 
2007, Landi et al. 2018, Xu et al. 2019). As it has been shown 
(Logofet 2005), much of the debate has been generated 
by aiming to generalize ecological dynamics and species 
interactions under a nonparametric approach. However, the 
merger between parametric and nonparametric approaches to 
species interactions in such a context is only possible under 
the (often implicitly) assumption of a LV model and equal 
equilibrium states for all species (Haydon 1994, Vázquez et al. 
2007, Novak et al. 2016). While researchers have been 
increasingly recognizing these assumptions in equilibrium 
dynamics (Berlow et al. 2004, Novak et al. 2016), it remains 
unclear whether the two approaches can be transferable in 
non-equilibrium dynamics, and more importantly, whether 
the transferability may reveal hidden ecological dynamics.

Here, we revisit and show how to bridge two of the most 
used measures of species interactions across the parametric and 
nonparametric approaches. We show that bridging parametric 
and nonparametric approaches present new ecological insights 

that cannot be revealed without this bridging. Specifically, we 
study species interactions under three categories: intraspecific, 
interspecific and higher-order interactions. In the reminder, 
we begin by showing that the measures in parametric and 
nonparametric approaches can be linked if and only if 
all species interactions are pairwise (i.e. no higher-order 
interactions are present) regardless of the dynamics assumed. 
Next, we demonstrate that interspecific interactions are more 
transferable across measures than intraspecific interactions. 
Next, we show two applications by building on the differences 
between approaches. Finally, we discuss how and when these 
measures can be combined to gain further insights about non-
equilibrium ecological dynamics and higher-order interactions.

The translucent mirror between measures

Intraspecific interactions

Under the parametric approach, a negative, constant, direct, 
intraspecific effect aii is often considered as self-regulation 
or intraspecific density dependence (Case 2000). However, 
under the nonparametric approach, the interpretation of the 
local aggregated intraspecific term Jii is more complicated. For 
example, following the general parametric formalism defined 
in Eq. 2, the diagonal elements of the Jacobian matrix are 
defined as
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and when the system is at equilibrium (i.e. fi = 0 in Eq. 3), it 
reduces to
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Note that the notation for si, gik and hijk in Eq. 4 and thereafter 
has been simplified, but they are still functions of the species 
abundances N. Therefore, regardless of the presence of higher-
order effects (whether bijk are all zeros) or the system is at the 

equilibrium ( N N
ti

i* , = 0d
d

), the term Jii measures the local 
aggregated effect across all the pathways under which species i 
can affect itself (not only the direct self-loop from i to i).

Hence, it is natural to ask what is the link between aii and Jii. 
In general, a negative sign in Jii does not imply a constant direct 
self-regulation (aii < 0), and vice versa (Somorjai and Goswami 
1972, Haydon 1994). This property can be easily illustrated 
using the logistic population dynamics of a single species,

d
d
N
t

N r a Ni
i i ii i= +( )   (6)

where ri and aii correspond to the intrinsic growth rate and 
the direct self-regulation of the single species i, respectively. 
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At the equilibrium ( K N a ri i ii i= = /* - ), the constant, direct, 
intraspecific effect is given by aii, which is interpreted as a 
constant self-regulation. In turn, from Eq. 5 the Jacobian 

Jii equals r a N r N
Ki ii i i

i

i
+ -2 = (1 2 ) , which is always positive 

when Ni < Ki/2, negative otherwise. This implies that, in gen-
eral, the interpretation of intraspecific interactions across the 
parametric and nonparametric are not the same.

Then, when can Jii be directly transferable into aii? If we 
require that the signs of aii and Jii be the same, we need the 
system at equilibrium following LV dynamics. The reason-
ing is that, no higher order effects exist in LV dynamics (i.e. 
bijk = 0) and the partial derivative of gij with respect to Ni is 0 

(i.e. 
¶
¶

¶
¶

g
N

N
N

ij
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j
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= = 0 ), thus that the second and third terms 

on the right-side of Eq. 5 vanish. If we additionally require 
that aii = Jii, then on top of the two previous requirements, we 
need all equilibrium abundances to be exactly the same (May 
and Mac Arthur 1972, Song and Saavedra 2018). While it is 
not explicit, note that previous work (May 1972, Coyte et al. 
2015) on the complexity–stability debate operates under 
these assumptions.

Interspecific interactions

Assuming that all direct effects are pairwise as described in Eq. 
2, the local, aggregated, interspecific effect can be derived as
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which only includes the direct effect (functional form) gij 
between species i and j. Under this assumption, Jij and aij(i ≠ j)  

always have the same sign because 
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> 0  means that effects are stronger with larger species 

abundances, which is true for all types of classical Holling 
functional responses.

Instead, assuming that constant direct interactions include 
higher-order effects as in Eq. 2, the Jacobian (the local aggre-
gated effects) can be derived as
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where Jij encodes not only the direct interspecific effects, 
but also the higher-order effects coming from species other 
than species i and j. Therefore, Jij can be interpreted as the 
local (state-dependent) direct effect between species i and 
j if and only if all (parametric) direct effects are pairwise. 
That is, under higher-order effects, there is no simple link 
between (parametric) aij and (nonparametric) Jij interspecific 
interactions. This also shows that the interspecific Jij (i ≠ j) is 
fundamentally different from the intraspecific Jii.

Learning from the differences between 
approaches

Debates on self-regulation and stability

Importantly, the differences between approaches (measures) 
can offer an opportunity to gain further insights about 
non-equilibrium ecological dynamics and higher-order 
interactions without modeling them (AlAdwani and Saavedra 
2019). For example, focusing on dynamics and building 
from the classic complexity–stability debate (May 1972), 
it is assumed that a community can be dynamically stable 
only if most of the constant, direct, intraspecific terms are 
negative (aii < 0), i.e. if ‘the population of each species would 
by itself be stable’ (May 1972). This assumption comes from 
the observation that dynamical stability requires that most of 
the local, aggregated, intraspecific terms are also negative (Jii 
< 0) (May 1972, Yodzis 1980, Sterner et al. 1997, McCann 
2011, Moore and de Ruiter 2012, Barabás et al. 2017). Yet, 
there is few empirical evidence to support the addition of 
direct self-regulation (aii < 0) for primary consumers and top 
predators (Pimm and Lawton 1977, Tilman 1982, Chesson 
2013), which would make most systems unstable.

This apparent contradiction arises from the ill perception 
that a negative Jii requires a negative aii. However, recall the 
link between Jii and aii (Eq. 4), Jii can be expressed in the 
absence of self-regulation (aii = 0) as
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This implies that a negative Jii (in equilibrium and non-equi-
librium dynamics) in a non-self-regulated species i (i.e. aii ≥ 
0) can arise in a broad class of nonlinear ecological dynamics 
simply by satisfying two conditions (Song et al. 2018): 1) 
a negative intrinsic growth rate (i.e. ri < 0), and 2) at least 
one negative, constant, direct, interspecific effect (i.e. aij < 
0). Note that those conditions do not apply to LV dynamics 
in equilibrium because of the linearity of the dynamics (i.e. 
¶
¶

g
N

ij

j
= 0 ). Figure 1 shows a simple example in a three-species 

food chain: both the consumer and the top predator have no 
constant, direct self-regulation; yet they can exhibit negative, 
local, aggregated, intraspecific effects. In contrast, the pri-
mary producer does have constant, direct self-regulation; yet 
it does not always exhibit a negative, local, aggregated, intra-
specific effect. Hence, apart (or instead) of local aggregated 
self-regulation mechanisms, these (or other conditions) can 
be taken as stabilization sources of ecological communities.

Detection of higher-order interactions

Ecology has seen the re-emergence of interest in higher-order 
interactions (Grilli et al. 2017, Levine et al. 2017, Mayfield 
and Stouffer 2017). However, it remains challenging to 
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convincingly detect the presence of higher-order interactions 
in empirical data (Kleinhesselink et al. 2019, Letten and 
Stouffer 2019, Xiao et al. 2020). The different interpretations 
of Jij in the presence of higher-order effects provide a new 
method to detect their existence. For example, it has been 
found that Jij can change its sign across time in a community 
(Ushio et al. 2018). If we assume that the governing popula-
tion dynamics only consists of pairwise direct effects (Eq. 2), 
then this result should be interpreted as the change of the 
type of the constant, direct, interspecific effect (i.e. the sign of 
the parameters in the governing population dynamics have to 
change). However, if we assume that the governing popula-
tion dynamics is fixed, then this result should be interpreted 
as the presence of higher-order direct effects. Figure 2 shows 
a simple three-species competing system with and without 
higher-order direct effects that illustrates these points. Of 
course, the assumption relies on our belief of how nature 
operates. For example, previous work (Ushio et al. 2018) has 
assumed that the governing population dynamics is fixed, 
implying the presence of higher-order direct effects.

Discussion

Traditionally, the parametric and nonparametric approaches 
have considered different measures and interpretations of 
species interactions. That is, species interactions are mea-
sured as constant-direct and local-aggregated effects within 
the parametric and nonparametric approaches, respectively. 

However, their interpretations have been occasionally used 
interchangeably (e.g. when describing the stability conditions 
of an ecological community, May 1972, Coyte et al. 2015), 
limiting our opportunity to use their differences to gain new 
insights about ecological systems. In this line, here we have 
provided a bridge between these two approaches (measures) 
and illustrated its utility. In particular, we have shown three 
fundamental properties of species interactions. First, the 
local, aggregated, intraspecific effect summarizes all poten-
tial pathways through which one species impacts itself, which 
can be negative without any direct self-regulation mechanism 
(Fig. 1). Second, the local, aggregated, interspecific effect 
only measures the direct effect between two species if and 
only if the population dynamics does not have any higher-
order direct effects (Fig. 2A–B). Third, higher-order direct 
effects can be detected by studying the changes of interaction 
signs within a nonparametric approach (Fig. 2C–D).

Species interactions are a multidimensional concept 
(Callaway et al. 2002, Nakazawa 2020), which naturally 
resulted in multiple definitions, ranging from mechanistically 
motivated characterizations to highly phenomenological rep-
resentations (White and Marshall 2019). However, despite 
the fact that these definitions are distinct mathematical enti-
ties, their construction implies that they must be inherently 
linked given that they all describe properties of species inter-
actions. Importantly, most of the definitions can be classi-
fied as either parametric or nonparametric. The parametric 
approach decomposes species interactions in biologically 
interpretable intraspecific, interspecific and high-order direct 

Figure 1. Local, aggregated, intraspecific effects can be negative without a constant, direct, self-regulation mechanism. (A) shows a simple 
three-level trophic chain with a primary producer (bottom circle), a consumer (middle circle) and a top predator (top circle). These species 
are linked by arrows showing the standard energy/biomass flow. Note that only the primary producer has a constant direct self-regulation 
(typically used in parametric approaches), i.e. a11 < 0, whereas a22 = a33 = 0. The governing equations describing the population dynamics 
of the three-species trophic chain are shown on the top. (B) shows the local (state-dependent), aggregated, intraspecific effects Jii (typically 
used in nonparametric approaches) when the trophic chain is governed by a type II functional response (parameters are taken from Hastings 
and Powell 1991). Top predator (J33) shows mostly negative, local, aggregated effects to itself; whereas both the consumer (J22) and the 
primary producer (J11) show anti-correlated oscillatory sign patterns of local, aggregated effects to themselves.
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effects. In turn, the nonparametric approach decomposes spe-
cies interactions in computationally feasible intraspecific and 
interspecific aggregated effects. Therefore, instead of linking 
specific definitions case-by-case, we have bridged these two 
approaches by focusing on their high-level conceptual links.

We hope this paper can open a dialogue between the para-
metric and the nonparametric approaches. The parametric 
approach has dominated community ecology (Kingsland 
2015), while the nonparametric approach has recently 
received increasing attention in the past decade (Deyle et al. 
2016, Ushio et al. 2018, Cenci and Saavedra 2019, Bray and 
Wang 2020, Karakoç et al. 2020, Ushio 2020, Yu et al. 2020). 
While both approaches have shaped our understanding of 
ecological dynamics, little is known about when and how we 

can transfer the knowledge from one approach to the other. 
Importantly, we have shown that the transferability is neces-
sary and provides a new perspective that each approach itself 
cannot offer. For example, the Achilles’ heel of the paramet-
ric approach is to evaluate whether the model has included 
enough details of the system under investigation. Indeed, if we 
assume a pairwise formalism, while the system is actually gov-
erned by a high-order formalism (Box 1), then we are likely 
to make false predictions of the system (Letten and Stouffer 
2019). However, the computational methods emerging from 
the parametric approach are difficult to distinguish (e.g. func-
tional responses and higher-order interactions) (AlAdwani 
and Saavedra 2019). Yet, relying upon the computational 
feasibility of the nonparametric approach (Deyle et al. 2016, 

Figure 2. Local, aggregated, interspecific effects and constant, direct effects have the same sign if and only if all direct effects are pairwise based 
(i.e. absent of higher-order direct effects). (A–B) Three competing species are governed by Lotka–Volterra dynamics without any higher-order 
direct effects (shown above panels; parameters adopted from saavedra et al. 2017). (A) shows the time series of species abundances. (B) shows 
the corresponding local, aggregated, interspecific effects (typically used in nonparametric approaches) that species 2 and 3 have on species 1, 
where both J13 and J12 are always negative. (C–D) Three competing species are governed by Lotka–Volterra dynamics with an added higher-
order direct effect from species 2 and 3 on species 1 (highlighted in red; shown above panels). This formulation of higher-order effects is 
conceptually inspired by Levine et al. (2017) and mathematically adopted from Letten and Stouffer (2019). (C) shows the time series of 
species abundances, which exhibit similar patterns as the model without higher-order interactions shown in (A). However, (D) shows that 
both J12 and J13 change their sign, which are fundamentally different from the patterns shown in (B).
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Martin et al. 2018, Cenci and Saavedra 2019), we may be 
able to distinguish the nature of species interactions acting on 
a system. Therefore, we believe that a better understanding 
of both the measures and assumptions used across parametric 
and nonparametric approaches can improve our knowledge of 
species interactions and ecological dynamics in general.
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