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Abstract
1. Resilience is broadly understood as the ability of an ecological system to resist 

and recover from perturbations acting on species abundances and on the sys-
tem's structure. However, one of the main problems in assessing resilience is to 
understand the extent to which measures of recovery and resistance provide 
complementary information about a system. While recovery from abundance 
perturbations has a strong tradition under the analysis of dynamical stability, it is 
unclear whether this same formalism can be used to measure resistance to struc-
tural perturbations (e.g. perturbations to model parameters).

2. Here, we provide a framework grounded on dynamical and structural stability 
in Lotka– Volterra systems to link recovery from small perturbations on species 
abundances (i.e. dynamical indicators) with resistance to parameter perturbations 
of any magnitude (i.e. structural indicators). We use theoretical and experimental 
multispecies systems to show that the faster the recovery from abundance per-
turbations, the higher the resistance to parameter perturbations.

3. We first use theoretical systems to show that the return rate along the slowest 
direction after a small random abundance perturbation (what we call full recovery) 
is negatively correlated with the largest random parameter perturbation that a sys-
tem can withstand before losing any species (what we call full resistance). We also 
show that the return rate along the second fastest direction after a small random 
abundance perturbation (what we call partial recovery) is negatively correlated with 
the largest random parameter perturbation that a system can withstand before at 
most one species survives (what we call partial resistance). Then, we use a dataset 
of experimental microbial systems to confirm our theoretical expectations and to 
demonstrate that full and partial components of resilience are complementary.

4. Our findings reveal that we can obtain the same level of information about resilience 
by measuring either a dynamical (i.e. recovery) or a structural (i.e. resistance) indicator. 
Irrespective of the chosen indicator (dynamical or structural), our results show that 
we can obtain additional information by separating the indicator into its full and par-
tial components. We believe these results can motivate new theoretical approaches 
and empirical analyses to increase our understanding about risk in ecological systems.
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1  | INTRODUC TION

Ecological systems such as bird species competing for resources 
(Gibbs & Grant, 1987), plants and their mutualistic pollinators 
(Burkle et al., 2013) and microbes interacting in the human gut 
(Costello et al., 2012) face constant perturbations in changing envi-
ronments. The resilience of such systems to different types of per-
turbations has been one of the most debated concepts in ecological 
research and has important implications for biodiversity and eco-
system functioning (Folke et al., 2016; Hodgson et al., 2015; Pimm 
et al., 2019). Broadly, resilience has been referred to as the ability of 
an ecological system to resist and recover from external perturba-
tions (Capdevila et al., 2020; Hodgson et al., 2015). To understand 
these concepts and measures, epistemological work has established 
three necessary conditions to study ecological responses to per-
turbations (Justus, 2013): (a) a description of the ecological system, 
which mathematically takes the form of a population dynamics model, 
(b) the definition of a reference state from which the system will be 
perturbed, and (c) the definition of the type and magnitude of per-
turbations, which can act on state variables, model parameters (i.e. 
the system's structure) or both (see Glossary). Following this ratio-
nale, recovery (although it has also been called resilience, see Justus 
(2013) and Pimm et al. (2019)) has been typically defined as how 
fast a system returns to a reference state after a given perturbation 
(Capdevila et al., 2020; Hodgson et al., 2015). In turn, resistance has 
been defined as how much change a system can exhibit after a given 
perturbation (Capdevila et al., 2020; Hodgson et al., 2015). Hence, 
a sufficient condition for a system to be resilient is to exhibit fast 
recovery and high resistance. However, in order to assess the re-
silience of a system, it is paramount to have informative indicators 
of recovery and resistance and to understand the interconnection 
between these two measures, which may not necessarily be comple-
mentary (i.e. provide different qualitative information about the re-
silience of a system; Domínguez- García et al., 2019; Kéfi et al., 2019).

Recovery has had a strong tradition in the mathematical anal-
ysis of asymptotic dynamical stability (hereafter dynamical stability; 
Strogatz, 1994). In ecology, recovery has been typically conceptu-
alized as the return rate along the slowest direction to a reference 
equilibrium state (Dakos et al., 2015; Donohue et al., 2016; Pimm & 
Lawton, 1977). This return rate can be quantified by the real part 
of the largest eigenvalue (if negative) of the Jacobian matrix when 
evaluated at equilibrium (Logofet, 2018; Novak et al., 2016). The 
Jacobian matrix represents the linearized dynamical forces acting 
around a given state. This implies that recovery has been mathe-
matically quantified by the long- term return rate (or the return time 
if inverted) of a system to a reference equilibrium state after small 
perturbations (per the linear validity of the Jacobian) acting on spe-
cies abundances (i.e. the state variables of the system).

By contrast, the measurement of resistance has had a weaker 
tradition in the field of dynamical systems (Strogatz, 1994) and it is 
unclear whether it can be linked to dynamical stability in ecological 
systems (Domínguez- García et al., 2019; Justus, 2013). Resistance 
has been typically quantified as the magnitude of displacement of a 
system following a perturbation (Carpenter et al., 1992; Hillebrand 
et al., 2018). Differently from recovery, resistance is not necessar-
ily limited to a particular quantitative equilibrium state (i.e. abun-
dance distribution at equilibrium), and it is expected to reflect the 
response of a system to perturbations acting on both species abun-
dances and on the structure of a system (Donohue et al., 2016; Pimm 
et al., 2019). Formally, this structure can be represented by a pop-
ulation dynamics model describing the governing laws of a system 
and its parameters (Justus, 2013). That is, while species abundances 
represent the state variables of a system, the structure represents 
the model parameters (and the model itself). Thus, it remains unclear 
whether recovery from abundance perturbations and resistance to 
structural perturbations can be quantified within the same formal-
ism, and whether there are potential connections between these 
two aspects of resilience (Hodgson et al., 2015; Pimm et al., 2019).

Focusing on parameter perturbations, a dynamical system is 
said to be structurally stable if the topology of the phase portrait 
(i.e. the qualitative behaviour of a dynamical system) is preserved 
under smooth parameter changes (Smale, 1967; Arnold, 1988). For 
example, a system with S species can be considered structurally 
stable if none of the species goes extinct after small changes in 
the parameters corresponding to species intrinsic growth rates 
(Saavedra et al., 2017). Importantly, it has already been shown 
that the sensitivity to stochastic perturbations of abundances in 
the vicinity of an equilibrium is equivalent to the sensitivity to 
fluctuations of the parameters within the same vicinity (Arnoldi 
& Haegeman, 2016). Specifically, the response to external infini-
tesimal perturbations acting on species abundances agrees with 
the minimal parameter perturbation able to render the system 
dynamically unstable. Furthermore, structurally unstable systems 
(i.e. systems that change their qualitative behaviour after small 
parameter changes) are characterized by conditions under which 
the largest eigenvalue of the Jacobian matrix is equal to zero 
(Duan, 2015; Strogatz, 1994). These previous results have estab-
lished a potential direction to link dynamical indicators (i.e. mea-
sures related to perturbations acting on species abundances) with 
structural indicators (i.e. measures related to perturbations acting 
on model parameters) to measure resilience in ecological systems 
(Cenci & Saavedra, 2018; Constable & McKane, 2015; Dobrinevski 
& Frey, 2012).

Here, we extend the connection between dynamical and 
structural indicators beyond the vicinity of an equilibrium state 
to study resilience in multispecies ecological systems. Specifically, 
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we link recovery with dynamical stability and define it as the long- 
term return rate of a system to a quantitative reference state (i.e. 
abundance distribution at equilibrium) after small random pertur-
bations on species abundances. We then separate recovery into 
full and partial recovery as to whether species abundances return 
fully or partially to such quantitative reference state respectively. 
Next, we link resistance with structural stability and define it as 
the ability of a system to remain in a qualitative reference state 
(i.e. species composition at equilibrium) after random parameter 
perturbations of any magnitude. We then separate resistance into 
full and partial resistance as to whether all the species or at most 
one species remains in such qualitative reference state respec-
tively. Therefore, we define full resilience as the capacity of a sys-
tem to maintain its full species composition through the recovery 

and resistance of all species. Then, we define partial resilience as 
the capacity of a system to maintain a partial species composition 
through the recovery and resistance of a subset of species (see 
Glossary).

We first illustrate our framework using theoretically parame-
terized ecological systems spanning multiple interaction types and 
number of species. In particular, we explore competition, mutu-
alistic and antagonistic systems with 3, 4 and 5 species. Overall, 
we find that when considering abundance and parameter per-
turbations together, recovery and resistance are interconnected 
measures of resilience. However, we show that these dynamical 
and structural indicators can provide complementary information 
about a system when separated into full and partial resilience. 
Then, we apply our framework to 17 experimentally parameterized 

GLOSSARY

Asymptotic dynamical stability: The capacity of a dynamical system to return to a quantitative equilibrium reference state after a 
given perturbation acting on its state variables (i.e. species abundances; Strogatz, 1994).
Dynamical indicator: A measure of resilience related to perturbations acting on species abundances.
Feasibility domain: The set of directions of parameter values (here intrinsic growth rates) compatible with positive solutions for all 
species (i.e. feasible system).
Full recovery: The return rate along the slowest direction following a perturbation acting on species abundances. We measure full 
recovery as the largest eigenvalue (�1) of the Jacobian matrix evaluated at an equilibrium state.
Full resilience: The capacity of a system to maintain its full species composition through the recovery and resistance of all species. 
Full resilience is partitioned into full recovery, which is related to abundance perturbations (i.e. asymptotic dynamical stability), and 
full resistance, which is related to parameter perturbations (i.e. structural stability).
Full resistance: The largest random parameter perturbation that the system can withstand before losing any species. We measure 
full resistance as the distance of an equilibrium state to the closest border (min{db}) of the feasibility domain (DF(A)).
Partial recovery: The return rate along the second fastest direction following a perturbation acting on species abundances. We 
measure partial recovery as the second smallest eigenvalue (�S−1) of the Jacobian matrix evaluated at an equilibrium state.
Partial resilience: The capacity of a system to maintain a partial species composition through the recovery and resistance of a subset 
of species. Partial resilience is partitioned into partial recovery, which is related to abundance perturbations (i.e. asymptotic dynami-
cal stability), and partial resistance, which is related to parameter perturbations (i.e. structural stability).
Partial resistance: The largest random parameter perturbation that a system can withstand before at most a single species survives. 
We measure partial resistance as the distance of an equilibrium state to the closest vertex (min{dv}) of the feasibility domain (DF(A)).
Perturbation: Any event that impacts the species abundances directly or the rules that govern population dynamics in an ecological 
system (i.e. the structure of the ecological system; Justus, 2013).
Population dynamics model: A mathematical idealized description of the causal relationships (mechanistic or phenomenological) 
connecting the change of a population through time as a function of abiotic and biotic factors (Case, 2000).
Recovery: The rate of return (or time, if inverted) of an ecological system to a reference state after a given perturbation (Hodgson 
et al., 2015).
Reference state: The state of an ecological system against which the perturbed system will be compared to (Justus, 2013). The refer-
ence state can be quantitative (e.g. the species abundances at equilibrium) or qualitative (e.g. the species composition of the system).
Resilience: Ability of an ecological system (i.e. set of interacting species) to resist and recover from external perturbations (Hodgson 
et al., 2015).
Resistance: The capacity of an ecological system to resist changes in relation to its reference state after a given perturbation 
(Hodgson et al., 2015).
Structural indicator: A measure of resilience related to perturbations acting on model parameters.
Structural stability: The capacity of a dynamical system to retain the topology of the phase portrait (i.e. the qualitative behavior of 
the trajectories) after a given perturbation to its structure (i.e. governing laws or model parameters; Strogatz, 1994).
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microbial systems containing three interacting species each. We 
corroborate our theoretical results that full and partial resilience 
are complementary components of experimental systems. Finally, 
we discuss the implications of our findings and future avenues of 
research on resilience.

2  | MATERIAL S AND METHODS

2.1 | Population dynamics model

To study and measure resilience in ecological systems, it is necessary 
to define (a) a population dynamics model, (b) a reference state, and 
(c) the system's response as a function of the type and magnitude 
of perturbations (Justus, 2013). Focusing on the model, we assume 
that the dynamics of ecological systems are governed by any model 
topologically equivalent to the classic Lotka– Volterra (LV) dynam-
ics. It has been shown that if the unstable and stable equilibria of 
the classic LV model can be mapped into the unstable and stable 
equilibria of a modified model, then this modified model is topologi-
cally equivalent to the classic LV (Cenci & Saavedra, 2018; Saavedra 
et al., 2020). The classic LV model written in the r- formalism is given 
by (Case, 2000):

where Ni is the abundance (or biomass) of species i , S is the num-
ber of species in the system and aij is an element of the interaction 
matrix A = {aij} representing the per capita effect of species j on 
species i . The phenomenological parameter ri is the intrinsic growth 
rate of species i , representing how abiotic factors affect the bal-
ance between mortality and resource intake (Case, 2000; Coulson 
et al., 2017).

To investigate resilience in the classic LV model, we generate fully 
connected random interaction matrices A by setting the diagonal 
elements to aii = −1∀ i  (introducing the biological principle of self- 
regulation), whereas the off- diagonal elements aij (i ≠ j) are randomly 
drawn from a normal distribution with mean zero and variance �2 (i.e. 
aij ∼ �(0, �2)). Note that the value of �2 sets the relative strength of 
interspecific interactions (aij) given that intraspecific interactions are 
fixed (i.e. aii = −1). To explore different types of ecological systems, 
we introduce sign constraints: (i) aij < 0 for competition systems,  
(ii) aij > 0 for mutualistic systems, and (iii) aijaji < 0 for antagonistic 
systems (Allesina & Tang, 2012; Murdoch et al., 2003; see Resilience 
in theoretical ecological systems). Applying these constraints is equiv-
alent to sampling aij from a half- normal distribution and taking the 
appropriate sign reversal (Allesina & Tang, 2012; Song et al., 2020). 
For simplicity, we only explore one type of antagonistic network 
structure given by a matrix A where aij < 0 if i > j and aij > 0 if i < j 
(e.g. a trophic chain with omnivory). Note that, in these antagonistic 
systems, the feasibility condition itself (i.e. N ∗

i
> 0∀ i ; see Reference 

state) constrains the ri values to be ecologically realistic as top 

predators and producers would necessarily have negative and posi-
tive ri values respectively.

To guarantee that reference equilibrium states are dynamically 
stable (see Reference state), we follow a probabilistic criteria for ran-
dom matrices and set the variance of the distribution of interaction 
strengths proportional to system size (�2 = 1∕S2; May, 1972). Note 
that having �2 to scale with the number of species S is an ecologically 
realistic assumption (Dougoud et al., 2018). We also tested a sce-
nario in which interspecific interactions are stronger (i.e. �2 = 1∕S)  
and obtained similar results (Figures S3 and S4). It is important to 
note that, under our framework, we cannot increase the relative 
strength of interspecific interactions beyond a certain limit in order 
to guarantee dynamical stability. Thus, we assume that every species 
in our theoretical systems (see Resilience in theoretical ecological sys-
tems) is self- regulated, including predators in antagonistic systems 
(Barabás et al., 2017; Song & Saavedra, 2020).

2.2 | Reference state

We consider a feasible and dynamically stable equilibrium as 
our reference state (Song et al., 2020; Song & Saavedra, 2018). 
Feasibility corresponds to the capacity of a system to sustain all 
its constituent species over the long run. Formally, feasibility im-
plies the existence of a positive solution (i.e. N ∗

i
> 0∀ i  under the 

equilibrium dNi∕dt = 0 in Equation 1). Note that feasibility is a 
necessary condition for persistence, permanence and the exist-
ence of bounded orbits (Hofbauer & Sigmund, 1998). In turn, we 
define dynamical stability as the capacity of a system to return 
to its feasible equilibrium state after small random perturbations 
on species abundances. This is fulfilled when all the eigenvalues 
of the Jacobian matrix (J) when evaluated at the equilibrium state 
(N ∗ = [N ∗

1
,…,N ∗

S
] T, as defined by dN ∗ ∕dt = 0) have negative real 

parts (Case, 2000; May, 1972).
For the classic LV dynamics (Equation 1), the Jacobian matrix at a 

feasible equilibrium is defined as:

where diag(N ∗ ) is a diagonal matrix with N ∗
1
,…,N ∗

S
 in its diagonal. The 

equilibrium of the classic LV model is given by the vector of species 
abundances N ∗ = −A

− 1
r. This definition of reference state has the 

advantage of allowing us to represent it as a quantitative or qualita-
tive reference state. Quantitatively, the focus is on the exact values 
of the feasible and dynamically stable equilibrium N ∗ (i.e. the species 
abundance distribution at equilibrium). Qualitatively, the focus is on 
the existence of such a feasible equilibrium (N ∗

i
> 0∀i ; i.e. the species 

composition at equilibrium).

2.3 | Recovery from abundance perturbations

Regarding the response of a system to abundance perturbations, 
we focus on the standard definition of recovery linked to dynamical 

(1)
dNi

dt
= Ni

(
ri +

S∑

j=1

aijNj

)
, i = 1,…, S,

(2)J = diag(N ∗ ) ⋅ A,
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stability (Strogatz, 1994). Specifically, we define recovery as the return 
rate of a system to a feasible and dynamically stable reference state 
after a small perturbation on abundances. Formally, we use as indica-
tors the real part of the largest (�1) and second smallest (�S−1) eigen-
values of the Jacobian matrix (J) evaluated at equilibrium (Equation 2). 
The largest eigenvalue (if negative) measures the return rate along the 
slowest direction of recovery. Because species abundances will have 
recovered completely after going through the slowest direction, we use 
�1 as an indicator of full recovery. The second smallest eigenvalue (if 
negative) represents the return rate along the second fastest direction. 
Because species abundances will have only partially recovered after 
going through the second fastest direction, we use �S−1 as an indica-
tor of partial recovery. Thus, for each possible feasible and dynamically 
stable state (N ∗) of a system, we use �1 and �S−1 as a measure of its full 
and partial recovery respectively (Figure 1a,b). To be able to compare 

�1 and �S−1 across different equilibrium states, we normalize N ∗ to unit 
norm (i.e. N ∗ ∕ | |N ∗ | |) before computing these indicators.

2.4 | Resistance to parameter perturbations

Shifting our focus to the response of a system to random parameter 
perturbations of any magnitude, we base our analysis on the concept 
of structural stability and link it with resistance. We define resist-
ance as the smallest random parameter perturbation that a system 
can tolerate without affecting its qualitative reference state (defined 
as a feasible and dynamically stable equilibrium). For a given inter-
action matrix A, feasibility in the classic LV model will be satisfied 
as long as the r- vector falls inside the feasibility domain defined as 
(Medeiros et al., 2021; Song et al., 2018):

F I G U R E  1   Dynamical and structural indicators of full and partial resilience. (a) An illustrative example of a 3- dimensional space of species 
abundances at equilibrium (N ∗ = [N ∗

1
,N ∗

2
,N ∗

3
] T) coloured according to the largest eigenvalue (�1) of the Jacobian matrix (J) evaluated at 

equilibrium. The interaction matrix A of this 3- species competition system is shown in the centre of the figure. Lower values of �1 indicate a 
faster full recovery of the system after abundance perturbations. Note that this space corresponds to the positive orthant of the unit sphere 
(i.e. | |N ∗ | | = 1, N ∗

i
> 0∀ i ). (b) The same space of species abundances, but coloured according to the second smallest eigenvalue (�2)  

of J evaluated at equilibrium. Lower values of �2 indicate a faster partial recovery after abundance perturbations. (c) The space of intrinsic 
growth rates (r = [ r1, r2, r3 ]

T) for the same system shown in (a) and (b) coloured according to the distance to closest border (min{db}) of the 
feasibility domain (DF (A )), which are indicated as black curves. Higher values of min{db} indicate a higher full resistance to perturbations on 
intrinsic growth rates. Note that r- vectors on the feasibility domain are normalized to unit norm (i.e. | | r| | = 1). (d) The same space of intrinsic 
growth rates, but coloured according to the distance to closest vertex (min{dv}) of DF (A ). Higher values of min{dv} indicate a higher partial 
resistance to perturbations on intrinsic growth rates
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where −vi is the i  th column vector of A and N ∗
i
 is the feasible (i.e. 

positive) abundance of species i  at equilibrium. Geometrically, DF(A) is 
a cone in S dimensions and any r- vector inside the cone gives rise to a 
feasible solution. Note that only the direction of the r- vector matters 
because if Equation (3) is satisfied for a given vector r, it is also satisfied 
for a scaled vector cr∀c > 0. Therefore, the region inside the borders of 
DF(A) corresponds to the specific directions of r for which the system 
is feasible (Saavedra et al., 2017). Ecologically, this domain defines the 
range of conditions linked to abiotic factors, which are phenomenolog-
ically represented by the direction of the r- vector, compatible with the 
persistence of all species in the system characterized by A (Medeiros 
et al., 2021; Song et al., 2020). Note that we do not impose any restric-
tion on the sign of the elements ri of the r- vector, they can be positive 
or negative depending on DF(A) (Song et al., 2018).

Importantly, starting from a feasible equilibrium state N ∗,  
a border of DF(A) (i.e. r =

∑
S
i= 1

N ∗
i
vi with N ∗

j
= 0 and N ∗

i
> 0∀

i ≠ j) represents a limit in the direction of r where at least one 
of the S species (i.e. species j) goes extinct (Grilli et al., 2017; 
Rohr et al., 2016; Tabi et al., 2020). Similarly, a vertex of DF(A) 
(i.e. r = N ∗

i
vi, withN

∗
i
> 0 and N ∗

j
= 0∀ j ≠ i) represents a limit in 

the direction of r where a single species (i.e. species i ) survives 
at most, depending on whether this species is self- sustained 
(Grilli et al., 2017; Rohr et al., 2016; Tabi et al., 2020). For ex-
ample, with three species, if one sets N ∗

1
= 0, the r- vector will 

lie on one of the borders of the cone (DF(A)), which is given by 
r = N ∗

2
v2 + N ∗

3
v3, withN

∗
2
,N ∗

3
> 0. Furthermore, if N ∗

1
= 0 and 

N ∗
2
= 0, then the r- vector will lie on one of the vertices of DF(A),  

which is given by r = N ∗
3
v3, withN

∗
3
> 0. Thus, we focus on the 

shortest distances that a system can withstand before hitting a 
border or vertex under random perturbations to r. Note that we 
focus on random perturbations as we typically have no a priori 
information about the direction of environmental perturbations. 
Importantly, measuring such distances in the parameter space al-
lows us to consider how resistant a system is to parameter pertur-
bations of any magnitude.

Because it is only necessary to know the direction (not the mag-
nitude) of r to know if a system A is feasible, we normalize the in-
trinsic growth rates to unit norm (i.e. r∕ | | r | |). Then, the distance 
between an intrinsic growth rate vector inside the feasibility domain 
(r(N ∗ )) and a border of DF(A) can be calculated by the arc length (i.e. 
angle) between r(N ∗ ) and r(border) as: db = arccos(r(N ∗ ) ⋅ r(border)),  
where r(border) is the orthogonal projection of r(N ∗ ) onto the border 
(Grilli et al., 2017). For a system with S species, each r(N ∗ ) inside 
the feasibility domain is associated with one distance to each of  
the 

⎛
⎜
⎜
⎝

S

S−1

⎞
⎟
⎟
⎠
= S borders. We focus on the distance to the closest bor-

der (min{db}). Thus, the distance of a system to the closest border 
(min{db}) represents the largest random parameter perturbation 
that the system can withstand before losing any species— which 
we call full resistance. Similarly, the distance between r(N ∗ ) and a 
vertex of DF (A) can be calculated by the arc length between r(N ∗ ) 
and r(vertex) as: dv = arccos(r(N ∗ ) ⋅ r(vertex)), where r(vertex) is the 

r- vector associated with the vertex. Note that the r- vector associ-
ated with a given vertex is equal to the corresponding column vec-
tor of A scaled by the single species abundance at equilibrium (i.e., 
r = N ∗

i
vi). For a system with S species, each r(N ∗ ) inside the feasibil-

ity domain is associated with one distance to each of the 
⎛
⎜
⎜
⎝

S

1

⎞
⎟
⎟
⎠
= S vertices.  

We focus on the distance to the closest vertex  (min{dv}). Therefore,  
the distance of a system to the closest vertex (min{dv}) represents 
the largest random parameter perturbation that a system can with-
stand before it is reduced to at most a single species— which we call 
partial resistance (Figure 1c,d).

2.5 | Resilience in theoretical ecological systems

First, we investigate the potential associations between recovery and 
resistance according to our measures described above across several 
theoretical systems (i.e. matrices A). To do so, we first generate three 
types of random matrices: competition systems, mutualistic systems 
and antagonistic systems (see Population dynamics model). For each of 
these three types of system, we generate 100 random matrices A by 
sampling the interspecific interaction coefficients aij from �

(
0,

1

S2

)
 

for three different system sizes: S = 3, 4 and 5 species. Then, for each 
random matrix, we sample 100 × 2(S− 2) feasible equilibria (i.e., N ∗

> 0)  
uniformly on the unit S- dimensional hypersphere (i.e. | |N ∗ | | = 1)  
and solve for the intrinsic growth rates: r = −AN

∗. To guarantee 
dynamical stability in addition to feasibility, we only sample equi-
librium states for which the real part of the largest eigenvalue of 
J = diag(N ∗ )A is negative. We eliminate random matrices for which 
all sampled equilibrium states had a non- negative largest eigenvalue. 
Note that we increase the number of sampled equilibrium states ex-
ponentially with S to account for the fact that sparsity among points 
grows exponentially with the number of dimensions.

For each feasible and dynamically stable equilibrium state that we 
sample, we calculate its full recovery (largest eigenvalue, �1), partial 
recovery (second smallest eigenvalue, �S−1), full resistance (distance 
to closest border, min{db}) and partial resistance (distance to closest 
vertex, min{dv}). To investigate whether recovery and resistance are 
linked, we compute the Pearson correlation coefficient (hereafter 
correlation) between full recovery and full resistance (�(�1, min{db})),  
as well as the correlation between partial recovery and partial resis-
tance (�(�S−1, min{dv})). We compute such correlations separately for 
each random system A. A strong negative correlation indicates that 
the faster the recovery from abundance perturbations, the higher 
the resistance to parameter perturbations (Figure 1). Finally, we 
study the complementarity between our indicators by computing 
the partial correlation between �1 and �S−1 controlling for the rank of 
�1 (�(�1, �S−1|rank of �1)). This control is necessary to account for the 
fact that �1 ≥ �S−1 for each equilibrium state by definition. We also 
compute the partial correlation between min{db} and min{dv} con-
trolling for the rank of min{dv} (�(min{db}, min{ dv}|rank of min{dv})).  
Note that min{dv} ≥min{db} for each equilibrium state. A value close 
to zero of these partial correlations would imply the that full and 
partial components are complementary.

(3)DF(A) =
{
r ∈ ℝ

S ||r = N ∗
1
v1 +⋯ + N ∗

S
vS, withN

∗
1
,…,N ∗

S
> 0

}
,
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2.6 | Resilience in experimental microbial systems

Next, we investigate the complementarity and potential application 
of our indicators of resilience using experimental ecological systems. 
For this purpose, we use 17 feasible and dynamically stable systems 
where each system consists of three interacting soil- dwelling bacte-
ria species (Friedman et al., 2017). These publicly available data come 
from a very detailed and controlled study performing persistence 
experiments by co- inoculating different combinations of hetero-
trophic soil- dwelling bacteria species at varying initial fractions and 
propagating them through five growth– dilution cycles (Friedman 
et al., 2017). Each 3- species experimental system is characterized 
by an interaction matrix A and an intrinsic growth rate vector r. The 
experimental values of r were inferred by fitting via least- squares 
the classic LV model (Equation 1) to the observed abundance time 
series of species monocultures (Friedman et al., 2017; Table S1). Each 
interaction matrix A was inferred through pairwise tournaments by 
fitting via least- squares Equation (1) to the observed time series of 
species abundances (Friedman et al., 2017; Table S2). Although more 
than 17 systems with three species are available from this dataset, 
we only use the systems for which the equilibrium state obtained 
using the experimentally inferred matrix A and intrinsic growth rate 
vector r (N ∗ = −A

− 1
r) is feasible and dynamically stable (Table S3).

Importantly, interaction matrices contained competition inter-
actions (i.e. aij, aji < 0), antagonistic interactions (i.e. aij < 0, aji > 0) or 
a mix of both. It is also important to note that the strength of in-
ferred interactions (aij) varies greatly across and within experimental 
systems (Table S2), allowing us to test our framework for different 
scenarios of interaction strengths. For each of the 17 systems (each 
combination of A and r), we calculate its full and partial resilience 
components following the same methodology as described above 
(see Resilience in theoretical ecological systems). Additionally, for each 
experimental system, we randomly sampled 2,000 feasible and dy-
namically stable equilibria uniformly on the positive orthant of the 
unit sphere (i.e. N ∗

> 0, | |N ∗ | | = 1, and 𝜆1 < 0) and measured our 
resilience indicators for each one of these sampled equilibria. The ra-
tionale behind sampling these 2,000 random equilibria was to com-
pare the full/partial recovery and full/partial resistance observed 
for the experimental systems with other potential values of these 
indicators that could have been observed under different conditions.

Following our analysis with theoretical systems, for each of the 
17 experimental systems, we study the complementarity of our in-
dicators by computing the partial correlation between full recovery 
and partial recovery (�1, �2) controlling for the rank of �1 (�(�1, �2
rank of �1)) as well as the partial correlation between full resistance 
and partial resistance (min{db}, min{dv}) controlling for the rank of 
min{dv} (�(min{db},min{dv} rank of min{dv})). Then, in order to prop-
erly summarize the relationship between full and partial resilience 
across systems, we compute a relative value for each indicator (�̃1, �̃2,  
min{ d̃b}, and min{d̃v}) by dividing each indicator by its minimum (re-
covery indicators) or maximum (resistance indicators) possible value 
that can be attained inside its corresponding feasibility domain. 
For example, the relative value of �1 (�̃1) for a given experimental 

equilibrium state N ∗ is obtained by dividing �1 by the minimum value 
of �1 attained over all 2,000 randomly sampled equilibria N ∗, i.e. 
�̃1 = �1∕min{�1}. Thus, relative values close to zero or one represent 
systems that have the minimum or maximum possible resilience re-
spectively. It is worth highlighting that this normalization does not 
allow us (and it is not intended) to compare the level of resilience 
between two different systems, only their resilience relative to the 
maximum possible value within the feasibility domain of the given 
system. Thus, a large variation in the experimental values of relative 
full and partial resilience can indicate a strong heterogeneity of resil-
ience patterns across systems.

3  | RESULTS

We found that fast recovery from abundance perturbations (i.e. 
state variables, N ∗

i
) is associated with a high resistance to param-

eter perturbations (i.e. perturbations on intrinsic growth rates, ri). 
Specifically, we found a strong negative correlation between full re-
covery (largest eigenvalue, �1) and full resistance (distance to closest 
border, min{db}) across the three types of theoretical ecological sys-
tems (competition, mutualistic and antagonistic systems; Figure 2a; 
Figures S1 and S2). Moreover, we found that this strong association 
between full recovery and full resistance holds for multiple random 
systems with different number of species (Figure 2b; Table S4). We 
obtained similar results for stronger interspecific interactions (i.e. 
�2 = 1∕S), but correlations can be weaker due to a smaller variation 
in �1 and highly asymmetric feasibility domains (i.e. high variation 
among the border lengths; Figure S3). We can understand this result 
by noting that the Jacobian matrix associated with an r- vector on a 
border of the feasibility domain will have a row of zeros, which im-
plies that the largest eigenvalue of this matrix will be zero (Figure 1a). 
In particular, all elements of the i  th row of the Jacobian will be zero 
when the system is located at the border where N ∗

i
= 0. Recall that 

all eigenvalues of the Jacobian matrix need to be negative in order to 
guarantee dynamical stability and more negative values imply faster 
recovery.

Similarly, we found a strong negative correlation between par-
tial recovery (second smallest eigenvalue, �S−1) and partial resistance 
(distance to closest vertex, min{dv}) across the three types of theo-
retical systems (Figure 3a; Figures S1 and S2). In addition, we con-
firmed that this strong relationship between partial recovery and 
partial resistance holds for multiple random systems with different 
number of species (Figure 3b; Table S4), even when interspecific 
interactions are stronger (Figure S4). Similar to the association be-
tween �1 and min{db}, the association between �S−1 and min{dv} can 
be understood by noting that the Jacobian matrix associated with an 
r- vector on a vertex will have S − 1 rows of zeros. This implies that 
the largest S − 1 eigenvalues of the Jacobian will be zero at a vertex 
and, therefore, the second smallest eigenvalue will be associated 
with the distance to the closest vertex (Figure 1a,b).

We can additionally separate the relationship between recov-
ery (full or partial) and resistance (full or partial) by the different 
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vertices of the feasibility domain, noting that each vertex corre-
sponds to the dominant species in the system (represented by 
different symbols in Figures 2a and 3a; Rohr et al., 2016; Tabi 
et al., 2020). The extent to which the relationship between recov-
ery and resistance may differ across vertices depends on the level 
of asymmetry in the feasibility domain (Rohr et al., 2016; Tabi 
et al., 2020). However, regardless of the asymmetry in the fea-
sibility domain or the identity of the most abundant species, the 
relationship between recovery and resistance remains strongly 
negative for each vertex (Figures 2a and 3a). To further explore 
this result, we computed the partial correlation between recov-
ery and resistance while controlling for the identity of the most 
abundant species and, as expected, obtained slightly stronger 
correlation values for �S−1 and min{dv} but not for �1 and min{db} 

(Figures S5 and S6; Table S5). In addition, we also confirmed that 
our indicators of recovery (�1 and �S−1) and resistance (min{db} 
and min{dv}) are weakly correlated after controlling for the rank 
of the largest variable and, therefore, complement each other 
(Figures S7 and S8; Table S5).

Moving to the experimental data, we confirmed the negative 
correlation between full recovery (�1) and full resistance (min{db};  
Figure 4a) as well as between partial recovery (�2) and partial re-
sistance (min{dv}; Figure 4b) using 3- species microbial systems. 
In particular, we found that �(�1, min{db}) and �(�2, min{dv}) are 
strong and negative for all 17 experimental systems (Figure 4c; 
Tables S6 and S7). Thus, the interconnections between recovery 
and resistance remained strong for the experimental systems de-
spite large differences in the type of interactions (i.e. competition, 

F I G U R E  2   Relationship between full recovery and full resistance in theoretical systems. (a) Each panel shows 200 values of full recovery 
(largest eigenvalue, �1) and full resistance (distance to closest border, min{db}) of one illustrative theoretical random system with three 
species (red: competition system, blue: mutualistic system, and yellow: antagonistic system). Interaction networks on the top right corner 
of each panel depict the interaction matrices A (dashed line: negative interaction, solid line: positive interaction, and line width: interaction 
strength). Point shapes (circle, square and triangle) correspond to the species with the highest abundance at that equilibrium state. 
Correlation values between �1 and min{db} are shown in the bottom left corner of each panel. The competition system is the same one as 
shown in Figure 1. (b) Each panel shows the correlation values between �1 and min{db} for a given type of system and for three system sizes 
(S = 3, 4, and 5). Boxplots denote the median and interquartile range and points show the actual correlation values obtained for each system 
type and size (100 values per boxplot corresponding to 100 theoretical systems)
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antagonistic or both interaction types) and interaction strengths 
(Figures S9 and S10).

Finally, we also confirmed that full resilience and partial resil-
ience are complementary components in the experimental data. 
Specifically, we found that all partial correlations between recovery 
indicators (�1 and �2) and resistance indicators (min{db} and min{dv})  
after controlling for the rank of the largest variable were weak in 
the experimental systems (Figures 4c and 5a,b). Furthermore, this 
complementarity was also observed in the diversity of combina-
tions between full and partial resilience across systems. That is, 
while some systems appear to exhibit high relative full resilience 
and high relative partial resilience (i.e. relative values close to 1), 
others appear to exhibit low relative values (i.e. relative values 
close to 0; Figure 5c,d). In addition, some systems appear to exhibit 

an asymmetry between the indicators— i.e. high relative full resil-
ience and low relative partial resilience and vice versa (Figure 5c,d). 
Note that correlations between full recovery and full resistance  
(�(�1, min{db})) as well as between partial recovery and partial re-
sistance (�(�2, min{dv})) are strong and negative, but not perfectly 
correlated (Figure 4c). Therefore, we should expect a strong qual-
itative mapping, but not a perfect quantitative match between the 
position of a system in Figure 5c and its position in Figure 5d. This is 
confirmed by strong and positive correlations between relative full 
recovery and relative full resistance (�(�̃1,min{d̃b}) = 0.83) as well 
as between relative partial recovery and relative partial resistance 
(�(�̃2,min{d̃v}) = 0.64). In sum, our results reveal that a wide diver-
sity of relationships between full and partial resilience is possible 
across ecological systems.

F I G U R E  3   Relationship between partial recovery and partial resistance in theoretical systems. (a) Each panel shows 200 values of partial 
recovery (second smallest eigenvalue, �2) and partial resistance (distance to closest vertex, min{dv}) of the same illustrative theoretical 
random systems with three species shown in Figure 2a (red: competition system, blue: mutualistic system, and yellow: antagonistic system). 
Interaction networks on the top right corner of each panel depict the interaction matrices A (dashed line: negative interaction, solid line: 
positive interaction, and line width: interaction strength). Point shapes (circle, square and triangle) correspond to the species with the 
highest abundance at the equilibrium state. Correlation values between �2 and min{dv} are shown in the bottom left corner of each panel. 
The competition system is the same one as shown in Figure 1. (b) Each panel shows the correlation values between �S−1 and min{dv} for a 
given type of system and for three system sizes (S = 3, 4 and 5). Boxplots denote the median and interquartile range and points show the 
actual correlation values obtained for each system type and size (100 values per boxplot corresponding to the same 100 theoretical systems 
from Figure 2b)
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4  | DISCUSSION

The resilience of ecological systems to perturbations is one of the most 
important yet broadly defined concepts in ecology and sustainability 
science (Folke et al., 2016; Hodgson et al., 2015; Pimm et al., 2019). 
Recently, the definition of resilience in ecology has been converging 
to the capacity of an ecological system to resist and recover from 
external perturbations (Capdevila et al., 2020; Hodgson et al., 2015). 
However, there are still many open questions about how to measure 

the response of multispecies systems to different types of perturba-
tion, and the extent to which these responses provide complementary 
information (Donohue et al., 2016; Domínguez- García et al., 2019; Kéfi 
et al., 2019. Understanding the different components of resilience and 
their interconnections with respect to different types of perturbation 
is paramount to implement risk assessment and conservation strate-
gies in ecological systems (Folke et al., 2004; Folke et al., 2016).

Here, we have introduced a new perspective in order to expand 
the way we measure resilience and understand the connections 

F I G U R E  4   Relationship between recovery and resistance in experimental microbial systems. (a) Full recovery (largest eigenvalue, �1)  
and full resistance (distance to closest border, min{db}) for one illustrative 3- species experimental system. Each grey point corresponds 
to one of 2,000 randomly sampled feasible and dynamically stable equilibrium states N ∗ and the orange point corresponds to the �1 and 
min{db} values of the experimentally parameterized system. (b) Partial recovery (second smallest eigenvalue, �2) and partial resistance 
(distance to closest vertex, min{dv}) for the same experimental system shown in (a). In (a) and (b), the interaction network depicts the 
competition interactions between Enterobacter aerogenes (Ea), Pseudomonas putida (Pp) and Serratia marcescens (Sm). Correlation values 
computed using the grey points are shown in the top right corner of each panel. (c) Each boxplot shows a given correlation computed for 
all 17 experimental systems. Note that �(�1, min{db}) and �(�2, min{dv}) are expected to be strong and negative, while �(�1, �2 | rank of �1) and 
�(min{dv}, min{db} | rankof min{dv}) are expected to be close to zero. Boxplots denote the median and interquartile range and points show 
the actual correlation values obtained for each system (17 values per boxplot corresponding to the 17 experimental systems)
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among its components in three major ways. First, by acknowledging 
that external perturbations can be of any type (i.e. abundance or pa-
rameter perturbations), we have extended and integrated dynamical 

(i.e. focused on abundance perturbations) and structural (i.e. fo-
cused on parameter perturbations) indicators of resilience (Arnoldi 
& Haegeman, 2016; Cenci & Saavedra, 2018; Saavedra et al., 2017). 

F I G U R E  5   Complementarity between full and partial resilience in experimental microbial systems. (a) Relative full recovery (�̃1) and 
relative partial recovery (�̃2) for the same illustrative 3- species experimental system from Figure 4a (large orange point) as well as 2,000 
values of �̃1 and �̃2 randomly sampled across the feasibility domain (DF(A)) of this system (small gray points). (b) Relative full resistance 
(min{d̃b}) and relative partial resistance (min{d̃v}) for the same system shown in (a) (large orange point) as well as 2,000 values of min{d̃b} 
and min{d̃v} randomly sampled across DF(A) (small grey points). In (a) and (b), the interaction network depicts the competition interactions 
between Enterobacter aerogenes (Ea), Pseudomonas putida (Pp) and Serratia marcescens (Sm). Note that systems close to 1 (dashed lines) 
are maximizing recovery and/or resistance. (c) Relative full (�̃1) and partial (�̃2) recovery for all 17 experimentally parameterized 3- species 
systems. The point highlighted with an arrow represents the system depicted in (a) and labels next to points indicate the experimental 
systems (Table S3). (d) Relative full (min{d̃b}) and partial (min{d̃v}) resistance for the same 17 experimentally parameterized 3- species systems 
shown in (c). The point highlighted with an arrow represents the system depicted in (b) and labels correspond to the same systems as in (c)
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Specifically, we have found a clear link between a dynamical stability 
indicator (long- term return rate of a system to a dynamically stable 
equilibrium after small abundance perturbations) and a structural 
stability indicator (the largest random parameter perturbation that a 
system can withstand before losing species). Thus, differently from 
previous studies that have analysed the associations between sev-
eral resilience indicators (Domínguez- García et al., 2019; Hillebrand 
et al., 2018), here we have focused only on recovery and resistance 
and suggest a fundamental mathematical link between them when 
the dynamics follows the LV model. This suggests that other po-
tential mathematical links may exist between frequently used dy-
namical and structural indicators of resilience (Arnoldi et al., 2016; 
Domínguez- García et al., 2019).

Second, we have found that recovery and resistance are in-
terconnected when focusing on either full or partial components. 
We have defined full resilience as the capacity of a system to 
maintain its full species composition through the recovery and re-
sistance of all species. In turn, we have defined partial resilience 
as the capacity of a system to maintain a partial species compo-
sition through the recovery and resistance of a subset of species. 
Specifically, we have shown that, under the LV model, fast (full 
or partial) recovery from abundance perturbations implies a high 
(full or partial) resistance to parameter perturbations. Therefore, 
we hypothesize that other hidden connections between resil-
ience indicators may be found if analysed through the lens of full 
and partial components (Kéfi et al., 2019). From a practical point 
of view, this connection between recovery and resistance means 
that we can monitor both of these aspects of resilience using a 
small number of indicators (e.g. the eigenvalues of the Jacobian 
matrix of a system).

Third, we have found that full and partial resilience (either 
recovery or resistance) can be treated as complementary com-
ponents. Thus, our study proposes a novel way to understand or-
thogonal dimensions of ecological resilience (Domínguez- García 
et al., 2019; Hillebrand et al., 2018). Interestingly, full resilience 
is related to individual risk, whereas partial resilience is related to 
systemic risk, two important concepts in ecological, financial and 
other complex systems (Beale et al., 2011; Levin, 1998). In fact, 
because full and partial resilience are complementary, focusing on 
only one of these components may provide a misleading risk as-
sessment of ecological systems (Beale et al., 2011). For example, 
our results show that a system that minimizes systemic risk (i.e. is 
located as far as possible from the vertices of the feasibility do-
main) may still have a high risk of losing individual species (i.e. is 
located close to a border of the feasibility domain; Figure 1c,d). 
In particular, the existence of a wide diversity of relationships be-
tween full and partial resilience in the studied experimental micro-
bial systems suggests that future work may investigate the extent 
to which these systems may be more exposed to individual or sys-
temic risk in the face of perturbations.

Our theoretical results can in principle be validated by perform-
ing perturbation experiments with simple experimental systems 
(e.g. microbial systems). For instance, one can measure the recovery 

rate of a system after small abundance perturbations (e.g. a single 
removal/addition of individuals/biomass, Steiner et al., 2006) and 
the resistance to extinctions after structural perturbations (e.g. a 
fixed change in temperature, Tabi et al., 2020 or resource availabil-
ity, Hoek et al., 2016) over a set of baseline environmental condi-
tions. Then, one can measure the association between dynamical 
and structural indicators, that is, recovery rate and resistance to 
extinctions. Furthermore, both indicators can be divided into their 
full (e.g. abundances fully recover, no single- species extinctions) and 
partial (e.g. abundances partially recover, no systemic collapse) com-
ponents. For a given system, our theory purports an association be-
tween full (partial) recovery and full (partial) resistance (Figure 4a,b), 
and no particular association between full and partial components 
(recovery or resistance; Figure 5a,b).

Finally, it is worth mentioning that our indicators of resilience 
are formally derived under the assumptions of feasible and dy-
namically stable equilibria with the classic LV model (Case, 2000). 
Thus, these assumptions have to be fulfilled in order to apply our 
framework using empirical data. Nevertheless, multiple methods 
have been developed to estimate the structure of nonequilibrium 
systems (e.g. Jacobian matrix) without assuming a parameterized 
population dynamics model (i.e. a nonparametric approach, Deyle 
et al., 2016; Ives et al., 2003; Ushio et al., 2018). In particular, pre-
vious work has shown that the divergence of a nonequilibrium 
vector field (characterized by the trace of the Jacobian matrix) is 
associated with the extent to which the trajectory of the system 
changes after parameter perturbations (Cenci et al., 2020; Cenci 
& Saavedra, 2019)— a measure of resistance. Thus, these previous 
results indicate that it may be possible to merge concepts from 
dynamical and structural stability also under a nonparametric ap-
proach. In this sense, we believe that our study may also add to the 
unification of parametric and nonparametric approaches (Song & 
Saavedra, 2020) and could be expanded to be used with different 
types of empirical data.
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