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The probability of persistence

Following previous work on structural stability in ecological research [1–3], it is possible to

calculate the probability of persistence Ω(A) of a given community structure A [3]. Persistence

is guaranteed by the existence of positive (feasible) and stable equilibrium abundances of the

system as a function of model parameters [4]. Note that feasibility is the necessary condition

for persistence, while feasibility and stability are the necessary and sufficient conditions [4].

Assuming that ecological dynamics can be described by any model topologically equivalent to

the Lotka-Volterra population dynamics model [5], it has been proved that the domain of

feasibility DF (A) is described by a convex cone with the edges defined by the columns of the

interaction matrix A [6] (see Fig. S1). This cone is made of vectors, whose elements are

phenomenological intrinsic growth rate values leading to feasible solutions. Then, to obtain

persistence, one has to restrict the domain of feasibility to the stable and feasible abundances.

That is, one has to determine the domain of stability DS(A). Note that DS(A) is necessarily

contained inside DF (A) as stability is defined only for feasible equilibria. Therefore, the

intersection of the domains of feasibility and stability can be called the domain of persistence

DP (A) = DF (A) ∩DS(A) (see Fig. S1). The larger DP (A), the larger the structural stability

of persistence of a community with community structure A. Consequently, following a classical

probabilistic approach, the probability of persistence Ω(A) is given by the proportion of

DP (A) within the parameter space of phenomenological intrinsic growth rates [2, 3]:

Ω(A) = proportion of DP (A) in the parameter space.

Formally speaking, Ω(A) is the normalized solid angle of the convex cone of persistence

DP (A) [2, 3]. Finally, one can constrain the parameter space of phenomenological intrinsic

growth rates to a domain C (e.g., considering only positive or negative intrinsic growth rates)

and define the conditional probability of persistence Ω(A|C):

Ω(A|C) = proportion of DP (A) inside C,

which is computed as the fraction (conditional probability)

Ω(A|C) =
Ω(A ∩ C)

Ω(C)
.

Finally, the probability of persistence of a randomly chosen species within the community

structure A (assuming a Binomial process) is given by
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ω(A) = Ω(A)1/n,

where n is the number of species in the community.

Domain of feasibility DF(A)

Domain of dynamical stability  DS(A)

Domain of persistence DP(A) = DF(A) ∩ DS(A) 

Figure S1: Graphical example of the domain of persistence for a 3-species community.
For a hypothetical interaction matrix (community structure) A with 3 species, following LV
dynamics, the figure shows the 3-dimensional parameter space of phenomenological intrinsic
growth rates (r1, r2, and r3). It is proved that the effective parameter space is equivalent to the
unit sphere S2 (gray region). The green region corresponds to the feasibility domain DF (A),
while the blue region corresponds to the dynamical stability domain DS(A). The size and shape
of these domains are modulated by the interaction matrixA. We define the domain of persistence
DP (A) = DF∩S(A) as the region compatible with feasible and locally stable systems.

Proof of invariant theorem

Here we prove that the shape of the feasible domain uniquely determines the domain of

dynamical stability. That is, once the shape of the feasibility domain is known, whether a

growth rate would give rise to feasibility and/or dynamical stability is also determined.

Lemma 1. Suppose there are two interaction matrices A and B, which only differ in the

columns by multiplication of some positive constants. Then, for the same intrinsic growth

rates, the two generalized Lotka-Volterra systems have the same feasibility and stability

properties. Furthermore, all eigenvalues of their Jacobians are the same.
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Proof. Denote the fixed intrinsic growth rates r as

r =
[
r1 r2 . . . rn

]ᵀ
and denote the interaction matrix A to be

A =
[
L1 L2 . . . Ln

]
and the interaction matrix B

B =
[
m1L1 m2L2 . . . mnLn

]
where all mk > 0.

The interior equilibrium of the system with interaction matrix A is defined by

dN

dt
= 0 = AN∗ + r

or equivalently

N∗ = −A−1r

The Jacobian matrix corresponding to this equilibrium point is

J = diag(N∗) ·A = diag(−A−1r) ·A

Thus, we only need to show that the the eigenvalues of diag(A−1r) ·A and diag(B−1r) ·B are

the same up to the ordering of eigenvalues.

Given that the determinant of a matrix is defined by

det(A) = sp

n∏
k=1

ak,p(k),

where sp = 1 if p is even, sp = −1 if p is odd, and p is a permutation of 1, 2, ..., n. Because each

product contains exactly one element from each column of the matrix, the product of all m can

be factored out, resulting in

det(B) =
n∏

k=1

mk · det(A).

In the process of taking the inverse of matrix B, while making the matrix of minors, each

element is defined by the elements of every other row and column. This makes each element a

product of the constants m of every other column except the one element that it belongs to.

Also during this process, the elements are transposed. This means that the constant that was
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found in the nth column is now found in the nth row. Because of this

B−1ij =
det(A)

det(B)

∏
mk

mi
· αij =

1

mi
· αij

Multiplying by the same r and taking the diagonal are the same processes for A and B so

(diag(B−1r))ij =
1

mi
· αij (S1)

Multiplying the matrix by B, it multiplies every element in the jth column by mj :

(diag(B−1r) ·B)ij = JBij =
mj

mi
· JAij

Thus, we can find the eigenvalues of JB using the characteristic equation

det(JB − λI) = sp

n∏
k=1

mj

mi
· αk,p(k).

Every product includes exactly one element from each row i and each column j, so we can

factor out the constants

det(JB − λI) =

∏
m∏
m
· sp

n∏
k=1

αk,p(k) = sp

n∏
k=1

·αk,p(k) = det(JA − λI)

Lemma 2. Norm of growth rate does not affect the stability nor feasibility

Proof. Let a system with growth rate r have the solution N∗, the Jacobian J and eigenvalues

λ. If instead we apply the growth rate cr to that system for some constant c > 0, the new

solution is N∗c = cN∗ and the new Jacobian is Jc = cJ . To find the eigenvalues of Jc we write

Jcv = (cJ)v = c(Jv) = cλv,

so cλ is an eigenvalue of Jc. Since c > 0 all of the eigenvalues of Jc are the same sign as the

eigenvalues of the original Jacobian. Because of this, both systems have the same stability

properties.

Lemma 3 (Characterization of the shape of the feasibility domain). The feasibility domain is

a simplicity cone generated as negative linear combination of the column space.

Proof. See [7].
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With Lemma 1-3, we have

Theorem 1. The shape of the feasibility domain uniquely determines the dynamical stability

and feasibility for any growth rate.

Note that the shapes of the feasible cones of A and B are exactly the same by lemma 3, but

the same growth rate corresponds to different feasible abundances.

Instead of column changes, which preserve the shape of the feasible cone, row changes might

change the feasible cone. By the invariant theorem, this would affect stability. Ecological

interpretation of row changes in Jacobian is taking the role of species abundance distribution

into stability analysis of LV system [8–10].

This has pointed out the asymmetry of aij and aji, which carries a different ecological meaning

but has received less attention.

Grid-approximation algorithm to sample the domain of

persistence

To find the domain of persistence in the numerical example of Box 3, we used a

grid-approximation algorithm. We used this algorithm to sample the domain of local

asymptotic stability inside the feasibility domain DS(A), which allowed us to compute the

domain of persistence DP (A) = DF∩S(A) compatible with feasible and locally stable states.

The algorithm evenly samples (given a step size) normalized points (i.e., the sum of species

abundances equals to 1) in the feasibility domain. Each point is a set of elements a1 - an and

all elements are strictly positive. The algorithm works as follows:

Step 1: We set the first n− 2 coordinates to be “fixed” at the given step size. The second to

last coordinate starts at the given step size and steps up incrementally while the last

coordinate steps down incrementally as 1−
∑n−1

k=1 ak (so the coordinates always sum to one).

At each increment, the unique point is saved in a list.

Step 2: All “fixed” coordinates increment one step size up and Step 1 is repeated for all

increments.

Step 3: The original list made in Steps 1 and 2 is copied and more points are created out of all

of the permutations of the order of coordinates. (For example: all of the points in the first list

but in the order a2, a4, a1, a3 are added.)

Step 4: All non-unique points are eliminated.
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Numerical example of the domain of persistence

In Box 3, we used the volume ω(A) of the domain of persistence DP (A) as the probability of

persistence. This is an adequate approximation under the assumption that the environmental

conditions (parameter values) is uniformly random. Of course, as the environment becomes

directional, it is important to understand the specific shape of DP (A). Although the

systematic examination of this shape is beyond the scope of this work, here we give one

concrete example to show that the shape is not a trivial problem.

The interaction matrix is 
-1.00000 13.15238 20.74604

16.53817 -1.00000 -12.75578

-19.29366 22.41098 -1.00000


And the corresponding shape of the domain of persistence is
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Figure S2: The triangle is a transformed feasibility domain DF (A). The black dots represent
the domain of persistence DP (A).
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Permanence as the criterion for persistence
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Figure S3: This figure is the same as Figure IIIC-D except that persistence is now defined as
permanence. That is, (i) the 3-species community has to be feasible, (ii) the determinant of the
3-dimensional matrix has to be positive, and (iii) the determinants of the three 2-dimensional
sub-matrices have to be positive—this is only valid for 3-species communities [4]. Note that
permanence include cyclic populations (as the condition for dynamical stability is not required).
The qualitative results remain the same as Figure IIIC-D.
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