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A Equivalent parameterizations

It is worth noting that several mathematically equivalent parameterizations have been used
to describe the LV dynamics of 2-competing species (Case, 2000). Yet, regardless of model
parameterization, the conditions leading to coexistence or priority effects are equivalent under
the Structural Approach. For example, in addition to the r formalism (Eq. 1) and MCT for-
malism (Eq. 4), the LV model can also be expressed in terms of carrying capacities (Vander-
meer, 1975). In this other parameterization—what is known as the K-formalism, the carrying
capacities K; are made explicit in the model as
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Recall that the carrying capacity K; of species i is computed as K; = r;/a;;. It corresponds
to the abundance at equilibrium when the species grows in the absence of competition strength.
Note that the carrying capacity is well defined only if ; > 0, i.e., the species can grow in
monoculture (Gabriel et al., 2005). To be equivalent to Eq. (1), the competition strength
must be standardized by the intraspecific competition, i.e., a;; = ay; /ai;. Note that a;; is tra-
ditionally called the niche overlap of species j on species i (Case, 2000). In the K-formalism,
the condition for coexistence (Eq. 2) reads as
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<=/ — < -, S2
P KiVa p (52)

and the condition for priority effects reads as
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These two sets of inequalities are very similar to those in the r-formalism (Egs. 2 and 3).
Notice that r; is replaced by K; and (); by a;;. Replacing the new parametrization into Eqn.
5, the niche overlap is given by p = ,/a12a21, which reveals that the niche overlap p defined in
MCT is, in fact, the geometric average of the niche overlap a;; of the two competing species.

Thus, the representation of the dynamical behavior of the LV model can be drawn in the
2-dimensional space made by the species fitness (k; = r;/ Vii0j ), the carrying capacities
(K; = ri/aii), or the intrinsic growth rates (r;) (Case 1999; Fig. S1). These representations
in the space of intrinsic growth rates are the core concept behind the structural approach
(Saavedra et al., 2017b). That is, Figure S1 shows that all these representations are conceptu-
ally equivalent to describe the range (as an algebraic cone) of intrinsic growth rates leading to
a given qualitative behavior (either coexistence or priority effects).
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Figure S1: Space of intrinsic growth rates for coexistence and priority effects. The dynam-
ics correspond to the Lotka-Volterra model (Eq. 1). These panels represent the range of
intrinsic growth rates—species fitness (panels A and D), carrying capacities (panels B and
E), and intrinsic growth rates (panels C and F)—leading to coexistence or priority effects.
Whether we can be in the presence of coexistence or priority effects is determined by the
stability-instability inequality, i.e., aga/a12 > ao1/aq1 for coexistence (panels A and C) or
oo /arie < o1 /aq; for priority effects (panels D and F). The slopes (a91/a11 in green and
aga/aqg in purple) of the two lines determining the coexistence (or priority effects) cone are
computed from the competition strengths. Actually, these four panels are a simple geometric
representation of the inequalities expressed in Eqgs. (2) and (3). The red line represents the
fitness equivalence line, and in dashed, its extension to priority effects.

S2



B Importance of intrinsic growth rates

In the MCT formalism (Eq. 4), intrinsic growth rates do not play any explicit role in either
feasibility nor stability. However, this is a special property of 2-species ODEs guaranteed by
the Poincaré-Bendixson theorem (Strogatz, 2014). Yet, a well-known counter-example to the
fact that intrinsic growth rates do impact the dynamics in other dimensions is the discrete
logistic growth dynamics of a single species,

Nt+1 = T‘Nt(]. - Nt), (84)

where increasing the intrinsic growth rate r would move the system from staying at a fixed
equilibrium to a chaotic dynamics. Moreover, it is rather easy to show counter-examples in
systems with more than 2 species. For example, consider the following 4-species competi-
tion ODEs with fixed interaction matrix (written following MCT formalism). The governing
population dynamics are (Vano et al., 2006)

1 109 152 0

0 1 044 1.36
233 0 1 047
1.21 051 035 1

Cil—lj = diag(r)diag(N)(1 — N). (S5)

where N = (Ny, Na, N3, Ny) is the vector of species abundances.

Figure S2A shows that the system exhibits chaotic behavior with intrinsic growth rates r =
(1,0.72,1.52,1.27), Figure S2B shows that the system exhibits a point attractor with intrinsic
growth rates r = (0.1,5.72,1.53,1.27), and Figure S2C shows that the system exhibits species
extinction with intrinsic growth rates r = (0.4,0.01,0.1,2). This illustrates the importance of
intrinsic growth rates in population dynamics even under the MCT formalism.
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Figure S2: Intrinsic growth rates impact population dynamics. All the simulations are gov-
erned by the same initial conditions and the same interaction matrix, but the intrinsic grow
rates. Panel A exhibits chaotic behavior, Panel B exhibits a point attractor, and Panel C
exhibits species extinction. The z axis is on the log ratio.
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C Structural Approach and priority effects

The Structural Approach (SA) has been defined as the structural stability of coexistence
under changes in intrinsic growth rates (Saavedra et al., 2017b). Here, we show how SA can
be naturally extended to priority effects.

Theorem S1. The structural stability of priority effects under changes in intrinsic growth
rates can be computed as §) = arccos Q1+

V1+Q3/1+Q3
Proof. Criteria for stable coexistence is

T9 1

Q1< =< — (S6)
1 2
and the criteria for priority effects is
1 T
2 T

Thus, the transition from stable coexistence to priority effects can be seen as

52 - O (S8)
01 52 (S9)

With the triangulate equality that

tana —tan8  1/tanf —1/tana
l+tanatanB 1+ 1/(tanatan )

(S10)

This shows that the normalized solid angle €2 remains the same after the transition. With
elementary trigonometric transformation, we have the result shown in Fig. S3. O

A B

n n

Figure S3: Cartoon of the proof. The figure shows how the transformation alters the rela-
tive position of the structural stability region but keeps the size fixed. Panel A represents
coexistence, while Panel B represents priority effects.
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D Formal combination of MCT and SA

To simplify the derivation of the combination of MCT and SA, let us denote the fitness ratio

ro [Q2

/G as ¢ and the ratio of intrinsic growth rates % as U.

D.1 Stabilizing mechanism and SA

Let us fix the fitness ratio ¢ as a positive constant. Then Q2 = ¢?u2Q1, and the niche
overlap can be written as

p=VQ1Q2 = ou~'Q1, (811)
which implies that
-2,2
cos ) = plo "+ 1) (S12)

VI 72?0 + 22

Looking at the conditions in p that increase € (the region of coexistence or priority effects)
we have

dcosQ ¢ 21— ph) (¢ 2P + 1)
o0 (o 20+ )

> 0,if p<1

. (S13)
< 0,if p > 1,

which is {

which implies that 2 decreases as niche overlap p increases under coexistence (p < 1), and 2
increases as niche overlap p increases under priority effects (p > 1.). Similarly, looking at the
conditions in p that increase {2 we have

dcosQ ¢ up(p* — 1)2(¢*2u2 -1)
O (9722 + p2)* (672022 + 1)

> 0,if Q1 > Q9

] (S14)
< 07 if Ql < Q?a

which is {

Thus, when ¢~ 2u% > 1 (i.e., Q1 > Q2), Q would increase if y = 2 decreases; and when
2% < 1 (ie., Q1 < Q2), Q would increase if u = :—f increases. This pattern is the same
regardless of whether looking at coexistence or priority effects.

D.2 Equalizing mechanism and SA

Let us fix the niche overlap p as a positive constant. Without loss of generality, we assume

that fitness ratio ¢ > 1. Then Q1 = pu¢ ', Q2 = pp~'¢. Unlike the stabilizing mechanism,
the equalizing mechanism is not always well-defined as feasibility is not always satisfied —

u has to lie within the feasibility domain spanned by (Q1,1) and (1,Q2). Hence, we define

Q) := 0 when feasibility is violated. Focusing on priority effects we have

p(p? + ¢%)
VO + PP i + p??
Note that the condition p~'u? < ¢ < pu? is equivalent to the feasibility condition & <p<
Q2. Similarly, for coexistence we have

p(p* + ¢%)
VO + P2 i + P2

cos ) = where p~1p% < ¢ < pp® (S15)

cos ) = where pu® < ¢ < p~tu? (S16)

Focusing only on non-trivial  (i.e., cos 2 # 1), the derivative of cos (2 is

DcosQ _ pPp(p® —1)’6(¢* — i?)

8(;5 (/’L2,02 +¢2>3/2(ﬂ2+p2¢2>3/27 (817)
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which impels that € decreases when ¢ > p and increases otherwise in both coexistence and
priority effects.

Furthermore, when ) are fixed, then

5 p? csc?(Q) <2(p4 +1) cos?(Q) — 4p% + V2(p? — 1) COS(Q)\/p4 + (% + 1) cos(2Q) — 6p2 + 1>
= e

(S18)
The conditions above imply that @)1 and Q2 do not depend on u. Note that in the extreme
case when Q reaches its maximum (i.e., ¢ = p, or, equivalently, Q; = Q2), the maximum of

is arccos(pfﬁl), which only depends on the niche overlap p.
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E Ratios of intrinsic growth rates and maximum solid angle

Figure 4 shows that different ratios of intrinsic growth rates r3/r; can yield the same maxi-
mum solid angle 2. While different ratios of intrinsic growth rates ry/r1 would have the same
aggregated tolerance to random perturbations (i.e. 2), they have different tolerances to direc-
tional perturbations. Figure S4 shows the three ratios ro/r1 = 1,2, 10 with their associated
maximum Q. When r3/r; = 1, the tolerances to directional perturbations (i.e. distances

to the boundaries) are similar. However, when 79 /7 increases, the tolerances to directional
perturbations shows a stronger trade-off.

Demographic ratio ry/ry=1 Demographic ratio ry/ry=2 Demographic ratio rz/ry=10

Species 2 intrinsic growth rate (r2)
Species 2 intrinsic growth rate (r2)
Species 2 intrinsic growth rate (r)
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Species 1 intrinsic growth rate (ry) Species 1 intrinsic growth rate (ry) Species 1 intrinsic growth rate (r4)

Figure S4: Different tolerances to directional perturbations with the same 2. The two axes
denote the intrinsic growth rates of two species. The blue region denotes the feasibility do-
main. The black line denotes the ratio of intrinsic growth rates (values in upper-right). As
the ratio of intrinsic growth rates deviates more from 1, the system is more robust to pertur-
bation upon one boundary and less robust to perturbation upon the other boundary.
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F Annual plant model

This section discusses how to apply MCT and SA on an the annual plant model (Godoy &
Levine, 2014). A more detailed disucssion can be found in Godoy & Levine (2014); Godoy
et al. (2014); Saavedra et al. (2017b). The annual plant model reads as

dN; 441
dt

giNilNi ¢
1+ 370 dijgi N

= (1 — gi)SiNi,t + (819)

where g; is the germination rate, s; is the seed survival probability, A; is the fecundity rate,
and d&;; is the competition strength (relative reduction in per capita growth rate). After alge-
braic manipulation, the equilibrium N; can be expressed as a linear equation:

giA - x
1= a;igi N> . S20
s P (5820)

Then, Eq. 1 can be achieved via re-parametrization

GiA
1-— (1 — gi)si
Ozz‘j = CNEZ‘jgj (822)

~1 (S21)

ri
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G Hypothesis testing for field data

Here we performed a hypothesis testing to show that there is a significant statistical tendency
to increase the feasibility domain {2 rather than increasing the fitness equivalence in the field
data (Figure 5B-C). Recall that the maximization of the former implies higher pressures

in intrinsic growth rates, while the maximization of the latter implies higher pressures in
competition strengths. Specifically, we established two hypotheses:

Hy : the tolerance to perturbation in competition strength is maximized (S23)

Hi : the tolerance to perturbation in intrinsic growth rates is maximized  (S24)

(S25)

To formalize this problem, it is equivalent to ask whether points in Figure 5B-C are closer
to the fitness equivalence line or to the maximizing €2 line. Let us denote the distance to
the fitness equivalence line as dy and the distance to the maximizing 2 line as ds. Then, the
hypotheses are equivalent to

Hy: dyfdy <1 (S26)
Hy : dg/dl >1 (827)

Figure S5 shows the distribution of the log ratios of distances dy/d; in the empirical data
set. Then, we ran Wilcoxon signed-rank test on the two hypotheses. For coexistence, we
found that Hy has a p value of 1 and H; has a p value of 3.049 x 10~7. Similalry, for priority
effects, we found that Hy has a p value of 1, and Hy has a p of value 0.0001009. Therefore, we
rejected the null hypothesis, and concluded there is a tendency to maximize the tolerance to
perturbations in intrinsic growth rates.
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Figure S5: This figure shows the distribution of the ratio of distances dy/d; for coexistence
(in blue) and priority effects (in orange) in the annual plants assemblages. The dotted red line
denotes the equal distance d; = do. The ratio of distances is plotted on log ratios.
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