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The timing of the first and last seasonal appearance of a species in a commu-

nity typically follows a pattern that is governed by temporal factors. While it

has been shown that changes in the environment are linked to phenological

changes, the direction of this link appears elusive and context-dependent.

Thus, finding consistent predictors of phenological events is of central impor-

tance for a better assessment of expected changes in the temporal dynamics of

ecological communities. Here we introduce a measure of structural stability

derived from species interaction networks as an estimator of the expected

range of environmental conditions compatible with the existence of a commu-

nity. We test this measure as a predictor of changes in species richness recorded

on a daily basis in a high-arctic plant–pollinator community during two

spring seasons. We find that our measure of structural stability is the only con-

sistent predictor of changes in species richness among different ecological and

environmental variables. Our findings suggest that measures based on the

notion of structural stability can synthesize the expected variation of environ-

mental conditions tolerated by a community, and explain more consistently

the phenological changes observed in ecological communities.
1. Introduction
Phenological events typically refer to the timing of the first and last seasonal

appearances of species in a given community [1,2]. These events follow temporal

patterns that depend on several environmental variables, such as temperature,

humidity, precipitation and day length, among others [3–6]. For example, the

timing of the first seasonal appearance of pollinators and flowering plants have

been well documented and observed to follow both temperature trends and

day lengths very precisely [1,7,8]. In fact, strong changes in the environment

can introduce significant changes to the phenology of species and impact the

dynamics of a community. For instance, drastic phenological changes can gener-

ate a mismatch between the phenophase of interacting species and impact their

life development [7,8]. While it has been shown that changes in the environment

are linked to phenological changes [1,2,9,10], the direction of this link appears elu-

sive and context-dependent [11–14]. Thus, finding consistent predictors of

phenological events is of central importance for a better assessment of expected

changes in the temporal dynamics of ecological communities [8,12].

Importantly, information about consistent predictors of phenological events

may be embedded into the structure of species interaction networks. Indeed,

early work has already suggested a strong relationship between the structure of

interaction networks and phenological events [7,8,15–18]. This structure has

been typically synthesized by who interacts with whom (or how species affect

each other) in a given location and time. For example, focusing on mutualistic

species, it is expected that phenological mismatches can be the strongest in species

having both a weak and a brief dependency on other species [8]. Similarly, it has

been shown that the flowering phenology of plant species can shift after loss of

species from the community [17]. These relationships imply that the structure of

interaction networks is a driving force of temporal dynamics in ecological commu-

nities and a potential indicator of phenological changes [19]. In fact, previous work

has already shown a link between the structure of plant–pollinator networks and
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the natural variability of temperature present in a given location

[20]. Thus, can the structure of interaction networks provide a

consistent predictor of phenological events?

To answer the question above, we introduce a measure

grounded on the notion of structural stability derived from

interaction networks as an estimator of the expected range of

environmental conditions compatible with the existence of a

community. Structural stability is broadly defined as the

capacity of a system to tolerate external perturbations without

changing its qualitative behaviour [21], becoming a natural

framework for the integration of community dynamics

and environmental conditions [22,23]. Then, we apply this

method to an empirical dataset recording the daily changes

of environmental variables, plant–pollinator interactions,

and the phenology of plants and pollinators during two

spring seasons in a high-arctic community [19]. Finally, we per-

form a statistical analysis [24] to investigate the consistency of

our measure of structural stability in explaining day-to-day

changes in species richness, and to compare its performance

against other ecological and environmental variables.
 7
2. Methods
(a) Structural stability
We developed a measure based on the notion of structural stability

to quantify the range of environmental conditions compatible with

the existence of a community—what is known as feasibility [25].

This measure of structural stability of a feasible community is

derived from a given interaction network and population

dynamics model [22,26]. Because we are interested in studying a

mutualistic system (plant–pollinator community), we approx-

imated the community dynamics with a standard mutualistic

dynamics model [19,26]. Formally, the dynamics of S interacting

species are approximated by:

dNi

dt
¼ riNi þ

XS

j¼1

aijNiNj,

where Ni corresponds to the abundance (or biomass) of species i, ri

is the intrinsic growth rate of species i, and aij are the elements of

the interaction matrix A representing the interaction strength

between species i and j (i=j ), and aii is the self-regulation term

of species i [27]. Note that our measure of structural stability is

not restricted to the linear functional response assumed above as

long as the dynamics are topologically equivalent [28].

Following previous work on mutualistic communities

[19,26,29], the elements aij of the interaction matrix A can be esti-

mated based on an observed interaction network M, where each

row i and column j corresponds to an observed plant and an

observed pollinator species, respectively. Each binary element

of this network M represents the presence (mij ¼ 1) or absence

(mij¼ 0) of an observed interaction between two species. The inter-

action matrix A is then constructed by estimating the interaction

strength between a plant i and a pollinator j by aij¼ gmij/kdi ,

where g is the maximum level of mutualistic strength allowed by

the community without losing dynamical stability [19], ki is the

number of direct interactions (mutualistic partners) of species i,
and d ¼ 0.5 is the mutualistic trade-off (values within 0 , d , 1

lead to the same conclusions, see refs [19,26]). Note that g fulfils

an important normalization role. Because it is difficult to know

the level of mutualistic strength in observed natural communities

based on occurrence data only [30], g systematically scales the

level of strength as a function of community size (viz., species rich-

ness) [19,26]. We neglect intra-trophic competition in order to

reduce the number of ad hoc free parameters in our study [19,31].
All the intra-specific interactions are set to aii¼21, which gives an

equivalence between intrinsic growth rates ri and carrying capacities

Ki (recall that Ki ¼2ri/aii). This implies that intrinsic growth rates

can be directly translated into changes in the availability of resources

as a function of environmental conditions [32–34].

Thus, to find the environmental conditions compatible

with the existence of a community with a given interaction

matrix A, we calculated the parameter space of intrinsic growth

rates leading to positive (feasible) species abundances [22,35].

This range of conditions (combination of intrinsic growth rates

or carrying capacities) is called the feasibility domain DF (A)

[26,36]. For example, heterotrophic species should exhibit smaller

negative intrinsic growth rates than the benefits they can obtain

from other species in order to have a positive balance of biomass

(hence feasibility) [37,38]. This feasibility domain forms an

algebraic cone [19, 36]:

DF(A) ¼ {r ¼ N�1 v1 þ � � � þN�SvS, with N�1 . 0, . . . , N�n . 0},

where N* are the species abundances at equilibrium. The size of

the feasibility domain DF(A) over the Euclidean space RS can be

calculated by the ratio of the following volumes [19,35]:

V(A) ¼ vol(DF(A) > BS)

vol(BS)
,

where BS is the unit sphere in dimension S (the normalized

parameter space of intrinsic growth rates), representing the

Euclidean space. Analytically, V(A) can be computed by [19,35]:

V(A) ¼ 1

(2p)S=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet(S)j

p
ð
� � �
ð

N��0

e�(1=2)N�TS
�1N� d N�,

where ATA ¼ 1
2 S
�1. The size V(A) of the feasibility domain can

be efficiently computed via a quasi-Monte Carlo method for

even relatively large communities [19,36]. The larger V(A), the

larger the range of parameters of intrinsic growth rates compati-

ble with positive species abundances in a given interaction

matrix A.

It is worth noting that V(A) is biased by the dimension S of

the community [37]. That is, it decreases by increasing the com-

munity size—the volume of a unit ball approaches 0 as the

dimension increases. Thus, we calculated the rescaled size of

the feasibility domain as

v(A) ¼ V(A)1=S:

It can be proved that v(A) is always between zero and one [38]. This

measure of structural stability corresponds to the probability that a

randomly chosen species in a given community can tolerate

random environmental perturbations (see figure 1 for a graphical

representation) [39–41]. In other words, this measure corresponds

to the fraction of environmental conditions compatible with a feas-

ible community given by a specific interaction matrix (estimated

from an interaction network). Note that if we consider self-regulated

non-interacting species, the value of structural stability would be

v(A) ¼ 0.5. That is, the positive abundance of such species only

depends on whether their intrinsic growth rate is positive (assuming

that positive and negative values can happen with equal chance).

(b) Empirical data and statistical analysis
Next we investigated the role of our measure of structural stability

in explaining phenological events, and compared its performance

against other ecological and environmental variables. To address

this, we used an empirical dataset recording daily changes in

environmental conditions and plant–pollinator interactions in a

high-arctic community during two spring seasons. This commu-

nity was located at The Zackenberg Research Station in

northeastern Greenland [19,42]. Species interactions between flow-

ering plants and their pollinators were recorded on a daily basis for

two consecutive years (in the springs of 1996 and 1997 whenever

http://rspb.royalsocietypublishing.org/
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Figure 1. Graphical illustration of the structural stability of a feasible commu-
nity. For a fictitious three-species community represented by an interaction
matrix A, the grey unit sphere corresponds to the normalized parameter
space of intrinsic growth rates (r ¼ [r1, r2, r3]T). Note that environmental con-
ditions can be translated into the intrinsic growth rates of species. The blue
cone represents the feasibility domain DF(A) generated by the column vectors
of the interaction matrix A, and represents the range of intrinsic growth rates
compatible with a feasible community. For example, the orange symbol at the
centre of the feasibility domain corresponds to a hypothetical starting environ-
mental condition leading to a feasible community. The dashed circle
corresponds to the hypothetical magnitude of an environmental change
acting on the intrinsic growth rates of species. Each point along the circle cor-
responds to a possible direction of the environmental change. The red symbols
on the circle outside the feasibility domain represent cases where at least one
species exits the community (viz., species extinction). Therefore, without prior
knowledge of the direction of the environmental change, we can use the rela-
tive size of the feasibility domain to estimate the probability of the existence
of a community. (Online version in colour.)
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weather allowed [42]). We compiled hourly measures of tempera-

ture and humidity of the sampled location for the entire

observation period from the Greenland Ecosystem Monitoring

Database. These hourly measures were used to calculate the

mean temperature and mean humidity for each day in our obser-

vation period. Note that the means of these environmental

variables are highly correlated to their variance. These two environ-

mental variables were the most complete measurements captured

over our observation period, and have been shown to be associated

to temporal dynamics of plant–pollinator communities [2,8,20].

Data on species interactions allowed us to put together daily

interaction networks Mt, which we used to estimate daily inter-

action matrices At and to calculate the level of structural stability

vt of the community for each observed day t. Because our measure

of structural stability only provides average information (the prob-

ability) of species existence, we quantified the overall change in

community size (change in species richness) for each day t by

the difference (Dt) between the number of species present on a

given day t and the number present on the previous day t 2 1.

That is, values of Dt . 0 indicate an increase of community size

from day t 2 1 to day t, Dt , 0 otherwise.

Then, we investigated the explanatory power of our measure of

structural stability on the observed day-to-day changes in commu-

nity size across the two seasons. This was carried out by using a

standard principal component analysis (PCA) and a partial corre-

lation analysis [43]. These two statistical analyses were performed
by using the response variable at time t and all the predictor vari-

ables at time t 2 1. We used the (lagged) response variable at time

t 2 1 as a predictor variable in order to provide a baseline for other

predictor variables. Predictor variables include community size,

structural stability, mean temperature and mean humidity. We

scaled all variables (mean ¼ 0, s.d.¼ 1) and detrended all vari-

ables by using the residual of a simple linear regression with

time [24]. This process allowed us to avoid spurious correlations,

and to discount the effect of other unknown temporal variables

(e.g. day length) affecting the response variable [24]. The PCA

was used to investigate the correlations and variance among

changes in community size and the predictor variables across the

two seasons. The partial correlation analysis was used to investi-

gate the consistency of predictor variables across the two seasons

in explaining the response variable while controlling for third

variables [43].
3. Results
Focusing on the raw data (non-detrended and non-lagged vari-

ables), we confirmed that the assembly of the community

follows a strong temporal pattern dictated by the natural

sequence of days. Figure 2a shows that the daily number of

species in the community generally increased as a function of

the sequence of days (Spearman’s rank correlations r ¼ 0.86,

p ¼ 0.001 in first period; and r ¼ 0.61, p ¼ 0.002 in second

period). However, figure 2b shows that changes in community

size can move up or down regardless of the sequence of days

(Spearman’s rank correlations r ¼20.27, p ¼ 0.231 in first

period; and r ¼20.37, p ¼ 0.089 in second period). This

reveals that while community size has an increasing trend

during the spring seasons, changes in community size vary

on a day-by-day basis.

As expected, environmental and ecological variables appear

to move in comparable directions to the assemblyof the commu-

nity. Figure 2c shows that the mean temperature increased as a

function of the sequence of days (Spearman’s rank correlations

r ¼ 0.71, p ¼ 0.001 in first period; and r ¼ 0.649, p ¼ 0.001 in

second period). In contrast, figure 2d,e shows that mean humid-

ity and structural stability moved with no particular direction

over the observation period (Spearman’s rank correlations

r(h) ¼20.16, p ¼ 0.454, r(s) ¼20.07, p ¼ 0.752 in first

period; and r(h) ¼ 0.31, p ¼ 0.168, r(s) ¼20.07, p ¼ 0.745

in second period).

Focusing on the detrended and lagged variables, the PCA

revealed that our measure of structural stability is a stronger

predictor of changes in community size than all the other pre-

dictor variables. Figure 3 shows the PCA for the two seasons

separately. The figure shows the strong relationship between

structural stability and changes in community size under the

two principal components derived from all our observed

variables. The two components accounted for 61% and 67%

of the variance in the first and second seasons, respectively.

Note that the closer two vectors are in a PCA, the stronger

their positive correlation.

Importantly, the partial correlation analysis revealed that

our measure of structural stability is the only consistent pre-

dictor variable across all the different controls and seasons.

Figure 4 shows all the different partial correlations between

changes in community size and predictor variables control-

ling for each of the other predictor variables in turn. All the

summary statistics can be found in electronic supplementary

material, tables S1 and S2. The figure confirms that structural

http://rspb.royalsocietypublishing.org/
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Figure 2. Environmental and ecological data in the observed plant – pollinator community across two spring seasons. For each day across the two observation
periods (differentiated by symbols), (a) shows the community size (viz., species richness), (b) shows the changes in community size (difference between community
size on a given day and the community size on the previous day), (c) shows the mean temperature, (d ) shows the mean humidity and (e) shows the estimated
structural stability derived from the observed interaction networks. Solid lines correspond to significant linear regressions between each of the variables and the
sequence of observation days. Correlations are reported in the text. (Online version in colour.)
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detrended. All predictor variables are lagged by one day. Auto corresponds to the response variable lagged by one day. The arrows correspond to the six associated
eigenvectors, and each small dot corresponds to one of the observation days. Note that the bottom and left axes correspond to the scaled values, whereas the top
and right axes correspond to the vector loadings. (a,b) Correspond to the observations in the first and second seasons, respectively. Note that the closer two vectors
are, the stronger their positive correlation. (Online version in colour.)
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Figure 4. Structural stability as a consistent predictor of changes in community size. The figure shows the partial correlations between changes in community size
(the response variable) and predictor variables (autocorrelation, mean humidity, community size, stability or mean temperature) while controlling for each of the
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stability is independent, highly, and positively correlated

with changes in community size. Moreover, structural stab-

ility was the only predictor with a constant correlation sign

across the two observation periods. These results were not

found for any other predictor variable.
4. Discussion
Changing environmental conditions are the main drivers of

ecological and evolutionary dynamics [11,32]. However,

knowing how the specific combination of multiple environ-

mental factors will affect the temporal dynamics of an

ecological community is not trivial [12–14], especially under

short-term time scales [2]. Here we have introduced a measure

based on the notion of structural stability to estimate the range

of environmental conditions (parameter space of intrinsic

growth rates) compatible with a feasible community. This

measure of structural stability was derived from interaction

networks—one of the most abundant and reliable data there

is about how species interact in a given location and time

[30], which makes it applicable for other studies. Importantly,

our results have shown that this measure is a consistent predic-

tor of phenological events. While our data only cover two

seasons and preclude us from making generalizations, the stat-

istical analysis has confirmed theoretical expectations about the

structural stability of feasible communities (i.e. the larger the

structural stability of a community, the higher the probability

of tolerating random perturbations).

This measure of structural stability provides an approxi-

mation to the level of external perturbations tolerated by a

community. In this line, our results have illustrated that both

environmental and ecological conditions are not enough to

explain the short-term dynamics in ecological communities,

it is also necessary to know the level of structural stability of

the community under study at each point in time [23]. That

is, environmental conditions alone are not informative of tem-

poral dynamics unless they are paired with knowledge about
the range of environmental conditions tolerated by a commu-

nity. For instance, ecological memory (as a new research

frontier) has been defined as the result of past environmental

conditions and subsequent selection on populations encoded

in the current structure of biological communities [11]. Thus,

the structure of interaction networks can be the result of the

interplay between internal constraints and an environmen-

tal filtering, encoding the tolerance of a community to its

environment and subsequent dynamics of its population.

Hence, our measure of structural stability derived from inter-

action networks may be associated with the ecological

memory of a community. Future work should test these ideas

more systematically on larger data sets spanning multiple

years and recording multiple environmental factors.

Phenological events are short-term dynamics by definition.

However, our findings suggest that this seasonal assembly

should not be conceptualized as a result of daily weather con-

ditions only. For example, the persistence of mutualistic

systems depends on the matching of mutually beneficial inter-

actions between species and should also be the result of the

combination between ecological and environmental factors

over long periods of time [11]. In this line, our measure of struc-

tural stability links environmental conditions and long-term

population dynamics of feasible communities (positive abun-

dances at equilibrium). While it is unlikely that ecological

communities are at equilibrium, feasibility conditions should

be interpreted only as descriptors of the dynamical space in

which a community is evolving [44]. Moreover, feasibility is a

necessary condition for species persistence regardless of whether

the communities are at equilibrium or not [45]. Therefore, pheno-

logical events can be understood as a seasonal steady state [46],

where it might be possible to use analytically derived time-

dependent probability distributions to explain and anticipate

them. Thus, our tools can be a promising route toward this goal.

We must point out that we cannot disentangle whether the

patterns (and therefore the results) that we have observed

across the two seasons are the consequence of a bias in the

sampling process or the actual ecological dynamics acting on

http://rspb.royalsocietypublishing.org/
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this high-arctic community. To properly disentangle these

effects it is necessary to have more seasons and environmental

variables. For example, the plant–pollinator community that

we have studied was subject to relatively low anthropo-

genic disturbances [42], and it is unclear whether structural

stability should play a constant and major role under more

disturbed conditions [20,23]. In other words, future work

should examine under which conditions the role of struc-

tural stability becomes undermined by the effect of daily

stochastic fluctuations.
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