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Abstract
1.	 Empirical	studies	have	found	that	the	mutualistic	interactions	forming	the	structure	
of	plant–pollinator	networks	are	typically	more	nested	than	expected	by	chance	
alone.	Additionally,	theoretical	studies	have	shown	a	positive	association	between	
the	nested	structure	of	mutualistic	networks	and	community	persistence.	Yet,	 it	
has	been	shown	 that	 some	plant–pollinator	networks	may	be	more	nested	 than	
others,	 raising	the	 interesting	question	of	which	factors	are	responsible	for	such	
enhanced	nested	structure.

2.	 It	has	been	argued	that	ordered	network	structures	may	increase	the	persistence	of	
ecological	 communities	 under	 less	 predictable	 environments.	 This	 suggests	 that	
nested	structures	of	plant–pollinator	networks	could	be	more	advantageous	under	
highly	seasonal	environments.	While	several	studies	have	investigated	the	link	be-
tween	nestedness	 and	various	environmental	 variables,	 unfortunately,	 there	has	
been	 no	 unified	 answer	 to	 validate	 these	 predictions.	Here,	we	move	 from	 the	
problem	of	describing	network	structures	 to	 the	problem	of	comparing	network	
structures.	We	develop	comparative	statistics,	and	apply	them	to	investigate	the	
association	between	the	nested	structure	of	59	plant–pollinator	networks	and	the	
temperature	seasonality	present	in	their	locations.

3.	 We	demonstrate	that	higher	levels	of	nestedness	are	associated	with	a	higher	tem-
perature	seasonality.	We	show	that	the	previous	lack	of	agreement	came	from	an	
extended	practice	of	using	standardized	measures	of	nestedness	 that	cannot	be	
compared	across	different	networks.

4.	 Importantly,	our	observations	complement	theory	showing	that	more	nested	net-
work	 structures	 can	 increase	 the	 range	 of	 environmental	 conditions	 compatible	
with	species	coexistence	in	mutualistic	systems,	also	known	as	structural	stability.	
This	increase	in	nestedness	should	be	more	advantageous	and	occur	more	often	in	
locations	subject	to	random	environmental	perturbations,	which	could	be	driven	by	
highly	changing	or	seasonal	environments.	This	synthesis	of	theory	and	observa-
tions	could	prove	relevant	for	a	better	understanding	of	the	ecological	processes	
driving	the	assembly	and	persistence	of	ecological	communities.
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1  | INTRODUCTION

Plant–pollinator	networks	are	the	synthesis	of	mutualistic	interactions	
between	flowering	plants	and	their	pollinators	co-occurring	in	a	given	
local	 site	 and	 time	 frame	 (Bascompte	&	Jordano,	2013).	These	net-
works	are	considered	to	have	a	structure	more	nested	than	expected	
by	chance	alone	(Bascompte,	Jordano,	Melián,	&	Olesen,	2003).	That	
is,	if	one	compares	the	observed	networks	against	random	networks	
where	the	interactions	have	been	arbitrarily	shuffled,	one	typically	ob-
serves	an	over-representation	of	 shared	mutualistic	 interactions	be-
tween	specialist	(species	with	few	interactions)	and	generalist	species	
(species	with	many	 interactions).	 Traditionally,	 this	 nested	 structure	
refers	to	the	network	topology	(i.e.	the	presence	or	absence	of	interac-
tions).	While	quantitative	measures	of	nestedness	have	been	proposed	
(Almeida-Neto	&	Ulrich,	2011;	Staniczenko,	Kopp,	&	Allesina,	2013),	
their	application	to	observed	networks	is	still	limited	for	two	main	rea-
sons:	theoretically	it	has	been	shown	that	the	topology	and	the	inter-
action	strength	of	mutualistic	networks	play	a	separate	role	in	shaping	
species	 persistence	 (Rohr,	 Saavedra,	 &	 Bascompte,	 2014;	 Saavedra,	
Rohr,	Dakos,	&	Bascompte,	2013),	and	the	frequency	of	interactions	is	
not	enough	to	parameterize	interaction	strengths	(Schupp,	Jordano,	&	
Gómez,	2017).	These	results	have	generated	a	rich	research	agenda	on	
understanding	the	factors	modulating	the	nested	structure	(topology)	
of	mutualistic	networks	in	general	(Bascompte	&	Jordano,	2013).

Importantly,	 seminal	work	 has	 predicted	 that	more	ordered	 net-
work	structures	(as	opposed	to	random	network	structures)	should	be	
found	in	less	predictable	environments	(Levins,	1968;	Margalef,	1968;	
May,	1975;	Odum,	1969).	The	rationale	is	that	under	less	predictable	
environments,	species	may	enhance	their	tolerance	to	external	distur-
bances	through	well-structured	communities.	 In	this	 line,	theoretical	
work	has	shown	that	a	nested	structure	in	plant–pollinator	networks	
can	enhance	species	coexistence	by	minimizing	species	competition,	
and	by	increasing	the	range	of	intrinsic	conditions	leading	to	positive	
species	abundances	(Bastolla	et	al.,	2009;	Rohr	et	al.,	2014;	Saavedra,	
Rohr,	Olesen,	 &	 Bascompte,	 2016;	 Saavedra	&	 Stouffer,	 2013).	 For	
instance,	 recent	work	has	 shown	 that	by	 keeping	 the	 same	 level	 of	
mean	interaction	strength,	the	more	nested	a	structure	in	a	mutualistic	
system,	 the	more	 tolerant	 the	community	would	be	 to	 random	per-
turbations	to	intrinsic	growth	rates	(Rohr	et	al.,	2014;	Saavedra,	Rohr,	
Olesen,	 et	al.,	 2016).	This	 tolerance	 is	 also	 known	 as	 the	 structural	
stability	of	community	persistence	(Rohr	et	al.,	2014;	Saavedra	et	al.,	
2017).	Thus,	it	can	also	be	predicted	that	nested	network	structures	
should	be	more	advantageous	and	occur	more	often	in	locations	sub-
ject	to	highly	changing	or	seasonal	environments.

Several	 studies	 have	 pointed	 to	 different	 environmental	 and	 
anthropogenic	factors	as	modulators	of	the	nested	pattern	of	plant–
pollinator	networks;	however,	little	agreement	has	been	found	on	spe-
cific	 effects	 (Dalsgaard	 et	al.,	 2013;	 Sebastián-González,	 Dalsgaard,	
Sandel,	 &	Guimarães,	 2015;	Takemoto	&	Kajihara,	 2016;	Takemoto,	
Kanamaru,	&	Feng,	2014;	Trøjelsgaard	&	Olesen,	2013;	Welti	&	Joern,	
2015).	 For	 example,	 looking	 at	 the	 association	between	nestedness	
and	 temperature	 seasonality,	 different	 studies	 have	 found	 both	 a	
negative	and	a	positive	relationship	(Sebastián-González	et	al.,	2015;	

Takemoto	&	Kajihara,	2016).	Undoubtedly,	 knowing	 the	 reasons	 for	
these	contrasting	findings	can	allow	us	to	increase	our	understanding	
about	the	processes	modulating	the	nested	structure	and	potentially	
the	persistence	of	ecological	communities.	One	candidate	explanation	
for	these	differences	is	the	statistical	analysis	itself,	in	which	case	the	
effect	 of	 predictor	variables	 could	 be	 difficult	 to	 reconcile	 as	many	
different	 correlated	environmental	 and	ecological	variables	 are	 con-
tinuously	 added	 into	 multivariate	 regression	 analyses	 (Legendre	 &	
Legendre,	 2012).	 A	 more	 fundamental	 problem,	 however,	 could	 be	
a	misuse	of	 the	statistical	metrics	employed	to	compare	across	net-
works.	 In	 such	 case,	 this	 problem	 could	 be	 corrected	 and	 applied	
across	studies.	 In	 this	manuscript,	 to	 test	 the	predictions	above,	we	
review	comparative	metrics	of	nestedness,	signal	important	misuses,	
and	provide	a	methodology	to	correct	them.	Then,	we	apply	the	new	
proposed	metrics	to	observed	plant–pollinator	networks	and	environ-
mental	data	to	investigate	whether	more	nested	structures	are	found	
in	more	seasonal	locations.

2  | MATERIALS AND METHODS

In	this	section,	first	we	will	define	how	we	calculate	nestedness.	Then	
we	will	show	how	this	measure	has	been	used	to	compare	nestedness	
across	networks.	Then	we	will	present	the	limitations	of	current	com-
parative	approaches.	Then	we	will	develop	a	new	statistic	to	correct	
for	these	limitations.	Finally	we	will	show	how	we	investigate	the	link	
between	nestedness	and	temperature	seasonality.

To	calculate	nestedness,	we	used	a	 standard	measure	known	as	
NODF	(Almeida-Neto,	Guimarães,	Guimarães,	Loyola,	&	Urlich,	2008).	
In	 fact,	 several	 metrics	 of	 nestedness	 have	 been	 proposed	 since	 it	
was	first	introduced	in	the	field	of	island	biogeography	by	Atmar	and	
Patterson	(1993)	and	then	applied	to	mutualistic	networks	(Bascompte	
et	al.,	2003).	Today,	one	of	the	most	intuitive	measures	of	nestedness	
is	NODF,	which	has	 shown	 to	be	a	consistent	metric	based	on	 two	
basic	properties	derived	from	the	original	concept	of	nestedness:	spe-
cies	can	be	arranged	in	decreasing	order	according	to	their	number	of	
mutualistic	partners,	and	the	mutualistic	partners	of	species	with	few	
interactions	are	typically	shared	with	species	with	more	 interactions	
(Almeida-Neto	et	al.,	2008).	Note	that	other	measures	of	nestedness	
are	highly	correlated	to	NODF	(Saavedra	et	al.,	2013;	Ulrich,	Almeida-
Neto,	&	Gotelli,	2009).

However,	NODF	 (as	 other	measures	 of	 network	 structure)	 is	 not	
exempt	 from	 having	 strong	 correlations	with	 other	 network	 descrip-
tors	(Ulrich	et	al.,	2009).	For	instance,	using	a	set	of	59	plant–pollina-
tor	networks	extracted	from	the	public	repository	web–of–life.es,	
Figure	1a,b	show,	respectively,	the	strong	positive	and	negative	associ-
ation	of	NODF	with	connectance	and	number	of	species	in	the	network	
(r	=	.86	and	−.71,	Pearson	correlation).	Note	that	connectance	is	defined	
as	the	fraction	of	observed	interactions	relative	to	the	maximum	pos-
sible,	while	the	number	of	species	is	calculated	by	the	geometric	mean	
of	plants	 and	pollinators.	These	 relationships	become	even	more	en-
tangled	as	connectance	and	the	number	of	species	are	also	highly	cor-
related	(r	=	−.81,	Pearson	correlation).	Overall,	these	strong	correlations	
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imply	that	the	raw	values	of	NODF	cannot	be	used	to	compare	nested-
ness	across	different	networks	(Ulrich	et	al.,	2009).	Note	that	these	59	
plant–pollinator	networks	correspond	to	the	aggregated	observations	
of	pollinator	visitations	over	different	periods	of	time,	meaning	that	the	
structures	and	 therefore	 the	correlations	must	be	 taken	with	caution	
(Trøjelsgaard	&	Olesen,	2016).	Yet,	it	has	been	shown	that	plant–polli-
nator	networks	can	display	consistent	structures	even	at	the	daily	level	
(Saavedra,	Rohr,	Olesen,	et	al.,	2016).

Additionally,	measures	such	as	NODF,	are	constructed	between	
some	 boundary	 values.	 For	 instance,	 NODF	 	∈	[0,	 1],	 where	 the	
higher	 the	 value,	 the	 higher	 the	 nested	 structure	 of	 the	 network.	
Nevertheless,	because	of	the	constraints	imposed	by	the	number	of	
species	and	interactions,	the	realized	minimum	and	maximum	values	
for	 these	measures	 can	 be	 different	 from	 those	 initially	 expected	
(Rohr	et	al.,	2014;	Saavedra,	Rohr,	Olesen,	et	al.,	2016).	Using	NODF	
and	without	assuming	any	additional	constraints	other	than	the	num-
ber	of	species	and	interactions,	by	construction,	the	minimum	values	
are	 almost	 zero	 for	 all	 the	 observed	 59	 plant–pollinator	 networks	
(Almeida-Neto	et	al.,	2008).	However,	 the	maximum	values	can	be	
significantly	less	than	one	(Rohr	et	al.,	2014;	Saavedra,	Rohr,	Olesen,	
et	al.,	 2016).	These	maximum	values	 can	 be	 found	 using	 a	 greedy	
algorithm	 (Cormen,	 Leiserson,	 Rivest,	 &	 Stein,	 1990).	 Specifically,	
starting	with	a	minimum	requirement	of	a	plant–pollinator	network	
(each	pollinator	 interacts	with	at	 least	one	plant),	we	added	a	new	
interaction	by	choosing	the	one	that	would	give	the	highest	NODF	
out	of	all	combinations.	We	 iterated	this	process	until	 the	number	
of	observed	interactions	is	reached	(R-code	provided	in	Song,	Rohr,	
&	Saavedra,	2017).	 In	our	dataset,	maximum	values	range	 in	[0.48,	
0.96]	and	are	positively	correlated	(r	=	.37,	Pearson	correlation)	with	
the	observed	value	of	NODF	(see	Figure	1c).	This	further	reveals	that	
NODF	values	need	to	be	normalized	by	their	realized	maximum	val-
ues	to	be	used	as	a	fair	comparison	measure	of	nestedness	across	
networks.

To	correct	for	some	of	the	problems	mentioned	above,	studies	have	
been	comparing	nestedness	across	networks	using	z-scores	(Dalsgaard	
et	al.,	 2013;	 Gilarranz,	 Sabatino,	 Aizen,	 &	 Bascompte,	 2015;	 James,	
Pitchford,	 &	 Plank,	 2013;	 Nielsen	 &	 Bascompte,	 2007;	 Sebastián-
González	 et	al.,	 2015;	 Takemoto	 &	 Kajihara,	 2016;	 Takemoto	 et	al.,	
2014;	Trøjelsgaard	&	Olesen,	2013;	Welti	&	Joern,	2015).	These	stan-
dardized	values	are	defined	as	z	=	(NODF	−	μ)/σ,	where	μ and σ	are	the	
mean and SD	of	the	distribution	of	NODF	values	(or	any	other	measure	
of	nestedness)	generated	by	a	chosen	null	model.	The	most	common	null	
models	are	known	as	the	equiprobable,	probabilistic	and	fixed	models	
(Bascompte	et	al.,	2003;	Ulrich	et	al.,	2009).	The	equiprobable	model	as-
signs	the	same	probability	to	each	potential	interaction	in	the	network.	
The	probabilistic	model	assigns	a	probability	to	each	potential	interac-
tion	proportional	to	the	number	of	observed	interactions	between	mu-
tualistic	partners.	Note	that	the	equiprobable	and	probabilistic	models	
provide	 almost	 identical	 results	 (Ulrich	 et	al.,	 2009).	 The	 fixed	model	
randomly	shuffles	the	interactions	while	preserving	the	observed	num-
ber	of	mutualistic	partners	of	each	species.	In	general,	when	comparing	
two	networks,	the	one	with	the	higher	z-score	is	considered	to	be	more	
nested	(James	et	al.,	2013).	However,	z-scores	should	not	be	used	for	
comparison	purposes	for	two	main	reasons:	one	statistical	and	one	re-
lated	to	inconsistency	problems	(Gelman	&	Stern,	2006;	Johnson,	1999).

The	 statistical	 problem	has	 to	 do	with	 the	 fact	 that	 the	 z-score	
strongly	depends	on	network	size.	Recall	that	the	z-score	is	computed	
by	dividing	the	difference	between	the	observed	level	of	nestedness	
(NODF)	and	 the	expected	 level	 (under	 the	null	model)	by	 the	SD	of	
the	null	model.	Nevertheless,	the	SD	decreases	as	the	inverse	of	the	
square	root	of	the	number	of	species	(see	Figure	2a).	In	fact,	this	SD 
has	 the	 same	 scaling	 property	 as	 a	 standard	 error	 in	 statistics	 (Zar,	
2010).	Consequentially,	rejecting	the	null	hypothesis	or	having	a	high	
z-score	becomes	easier	to	achieve	under	large	networks.

To	illustrate	this	situation,	for	different	numbers	of	species,	we	ran-
domly	generated	1,000	networks	using	the	equiprobable	model	(other	

F I G U R E  1   	Association	of	nestedness	with	other	network	descriptors	and	constraints.	For	59	observed	plant–pollinator	networks,	(a)	and	(b)	
show	the	positive	and	negative	association	of	nestedness	(NODF)	with	connectance	and	number	of	species	(log	of	geometric	mean	of	plants	and	
pollinators)	respectively.	Results	are	qualitatively	the	same	if	the	number	of	species	is	calculated	by	the	log	of	the	sum	of	plants	and	pollinators.	
(c)	It	illustrates	the	positive	association	between	nestedness	(NODF)	and	the	maximum	value	of	nestedness	that	can	be	reached	in	the	
corresponding	network	(calculated	using	a	greedy	algorithm).	Each	point	corresponds	to	one	of	the	59	networks.	The	red	lines	correspond	to	the	
linear	regression	(intended	to	guide	the	eye),	and	r	corresponds	to	the	Pearson	correlation	(all	correlations	were	significant	at	the	5%	confidence	
level)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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null	 models	 lead	 to	 the	 same	 conclusions),	 calculated	 their	 NODF	
values,	and	computed	their	SD	(σ)	and	standard	region	of	acceptance	
(μ + 2σ,	equivalent	to	z	=	2).	These	random	networks	had	a	fixed	con-
nectance	of	0.3	and	vary	in	size	from	50	to	350	species	(other	param-
eter	values	lead	to	the	same	conclusion).	Figure	2	shows	that	the	SD 
of	these	networks	decreases	as	a	nonlinear	function	of	the	number	of	
species,	consequently	making	the	region	of	acceptance	proportionally	
smaller.	This	implies	that	raw	values	of	NODF	will	more	likely	fall	out-
side	the	region	of	acceptance	(larger	z-scores)	in	large	networks.	Thus,	
we	cannot	fairly	conclude	that	a	network	with	a	z-score	of	3	is	more	
nested	than	a	smaller	network	with	a	z-score	of	2	 (Gelman	&	Stern,	
2006;	Johnson,	1999).

The	problem	related	to	inconsistency	relates	to	the	fact	that	even	
if	we	grant	that	z-scores	from	different	networks	may	be	compared,	
these	z-scores	are	inconsistent	across	different	levels	of	connectance	
and	number	of	species.	This	statement	can	be	derived	from	the	fact	
that	a	z-score	is	equivalent	to	a	p-value	in	statistics,	which	is	only	valid	
for	a	particular	data	and	model	(Gelman	&	Stern,	2006;	Johnson,	1999;	
Legendre	&	 Legendre,	 2012).	That	 is,	 unless	 z-scores	 are	 generated	
from	networks	with	the	same	descriptors	(connectance,	size,	etc.),	the	
probability	distribution	of	values	generated	by	any	null	model	would	
be	different.	This	inconsistency	problem	limits	the	capacity	of	z-scores	
to	 detect	 structural	 similarities	 between	 different	 networks,	 even	
when	these	networks	are	generated	with	the	same	mechanism.

To	illustrate	the	problem	of	z-scores	related	to	inconsistency,	we	
constructed	 1,000	 random	 networks	 using	 the	 equiprobable	model	
(with	 different	 connectance	 and	 sizes),	 calculated	 their	 NODF	 val-
ues,	 computed	 the	 expected	 z-score	 (using	 the	 probabilistic	 and	
fixed	models),	 and	checked	whether	 the	expected	z-scores	changed	
across	networks	with	different	sizes	and	connectance.	The	randomiza-
tions	used	to	calculate	the	expected	z-scores	are	done	following	the	
equiprobable	model	 using	 upper	 triangular	matrices	 (all	 interactions	
are	zero	below	the	main	diagonal).	This	 is	done	 in	order	 to	 increase	
the	 accuracy	 of	 the	 expectations	 by	 decreasing	 the	 sampling	 space	
(results	 are	qualitatively	 the	 same	without	 this	 restriction).	This	was	

repeated	for	different	sizes	(between	20	and	60	species)	and	different	
values	of	 connectance	 (between	0.1	and	0.4).	Because	all	 networks	
are	 constructed	 in	 the	 exact	 same	 unstructured	way	 (i.e.	 following	
the	equiprobable	model),	 there	 is	no	reason	to	expect	 that	an	aver-
age	network	generated	with	given	parameters	should	be	more	or	less	
nested	 than	 an	 average	 network	 generated	with	 other	 parameters.	
Any	potential	difference	should	be	simply	a	consequence	of	changing	
connectance	and	size.	While	it	is	believed	that	z-scores	should	control	
for	 these	potential	differences,	Figure	3	clearly	shows	that	both	 the	
probabilistic	 and	 fixed	models	 continue	 to	 display	 significant	 differ-
ences	in	the	expected	z-scores	as	function	of	connectance	and	size.	
This	confirms	that	z-scores	are	not	a	consistent	statistical	measure	of	
nestedness	across	networks.

To	 compare	nestedness	 across	networks	 and	be	 able	 to	 investi-
gate	its	association	with	temperature	seasonality,	we	need	to	develop	
nestedness	 statistics	 with	 independent	 properties	 from	 maximum	
nestedness,	network	size	and	connectance.	To	do	this,	we	can	prop-
erly	 normalize	 nestedness	 values	 and	 combine	 them	with	 network	
descriptors	 (Legendre	 &	 Legendre,	 2012;	 Zar,	 2010).	 Because	 we	
know	 that	 the	 maximum	 value	 of	 nestedness	 is	 not	 the	 same	 for	
every	network	 (see	Figure	1c),	a	good	candidate	for	normalization	 is	
the	value	 of	 nestedness	 relative	 to	 its	maximum	possible	value,	 i.e.	
NODFn = NODF∕max(NODF).	Additionally,	as	we	know	that	connec-
tance	and	 size	 are	 strong	modifiers	of	nestedness,	we	can	 combine	
these	network	descriptors	with	our	normalized	value	of	 nestedness	
to	control	for	these	effects.	Here,	we	used	the	simplest	multiplicative	
interaction	given	by	NODFc = NODFn∕(C ⋅ log(S)),	where	C	and	log(S)	
are	the	connectance	and	the	log	of	the	geometric	mean	of	plants	and	
pollinators	 in	the	network	(results	are	qualitatively	the	same	if	using	
the	log	of	the	sum	of	plants	and	animals).	Note	that	we	use	log(S)	in-
stead	of	the	raw	number	of	species	because	only	with	log(S),	NODFc 
remains	independent	from	network	size	(see	Figure	S1).

To	test	the	combined	nestedness	statistic,	we	repeated	the	con-
sistency	 analysis	 above,	 but	we	 replaced	 the	 z-scores	with	NODFc.  
Figure	3	 confirms	 that	 the	 combined	 nestedness	 statistic	 is	 in	 fact	

F I G U R E  2   	Dependency	of	null	models	on	data	points.	Calculating	NODF	on	randomly	generated	matrices	(using	the	equiprobable	model),	
the	figure	shows	the	SD	(σ)	and	the	standard	maximum	value	of	acceptance	of	the	null	hypothesis	(μ + 2σ,	equivalent	to	z-score	=	2)	as	a	
function	of	the	number	of	species	on	a	log	scale	(data	points).	Each	point	is	generated	by	sampling	random	interactions	matrices	(1's	and	0's)	
with	a	fixed	connectance	of	0.3.	Note	that	the	number	of	species	modulates	the	SD	(a),	which	in	turn,	modulates	proportionally	the	z-score	(b)
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consistent	 across	 network	 size	 and	 connectance.	This	 shows	 that	 a	
combined	 statistic	 can	 be	 a	more	 reliable	measure	 than	 z-scores	 to	
compare	nestedness	across	networks.	Importantly,	the	consistency	of	
this	combined	statistic	allows	our	investigation	of	the	potential	associ-
ation	between	nestedness	and	temperature	seasonality.

Finally,	 to	 test	 the	 hypothesis	 that	 nestedness	 should	 increase	
under	changing	environmental	conditions,	we	 investigated	the	asso-
ciation	between	the	combined	nestedness	statistic	(NODFc)	and	the	
level	of	temperature	seasonality	(variance	of	daily	temperature)	in	dif-
ferent	 locations	around	the	world.	The	 latitude	and	 longitude	of	the	
observed	plant–pollinator	networks	were	obtained	from	the	public	re-
pository	web-of-life.es.	Environmental	data	were	obtained	from	
the	public	repository	WorldClim	(version	1.4,	release	3,	resolution	2.5	
min).	Using	these	repositories,	we	gathered	environmental	data	for	43	
out	of	the	59	networks.	We	did	not	find	information	about	the	other	
16	 networks	 (network	 and	 temperature	 data	 are	 provided	 in	 Song	
et	al.,	2017).	To	study	the	direct	relationship	between	the	combined	
nestedness	statistic	and	temperature	seasonality,	first	we	used	a	sim-
ple	correlation	analysis.	Because	it	is	not	expected	that	only	one	factor	
(e.g.	 temperature	 seasonality)	 should	 perfectly	 explain	 the	 structure	
of	 ecological	 networks	 (Trøjelsgaard	&	Olesen,	 2016),	we	 also	 used	
a	standard	principal	component	analysis	(PCA;	Legendre	&	Legendre,	
2012).	This	approach	allowed	us	to	project	the	multidimensional	vari-
ation	of	the	dataset	into	fewer	dimensions	(principal	components).	We	
used	the	combined	nestedness	statistic,	log(S),	connectance	and	tem-
perature	seasonality	as	variables	in	our	PCA.	Thus,	the	PCA	illustrates	
the	 correlations	 between	 these	 variables	 and	 how	 they	 explain	 the	
variances	in	the	data.	Additionally,	we	compared	the	correlation	and	
PCA	results	against	the	results	from	standardized	values	of	nestedness	
(z-scores).

3  | RESULTS

Focusing	on	 the	simple	correlations	between	 the	nestedness	statis-
tics	and	temperature	seasonality,	Figure	4a,b	shows	that	the	z-scores	
derived	from	the	probabilistic	and	the	fixed	models	have	nearly	a	null	
correlation	 (r	=	.02	 and	 −.07,	 Pearson	 correlation).	 In	 contrast,	 the	
figure	 (Figure	4c)	 shows	 that	 the	 combined	nestedness	 statistic	has	
a	positive	correlation	with	temperature	seasonality	 (r	=	.27,	Pearson	
correlation).	Note	that	both	the	outliers	and	the	low	correlation	warn	
caution	 on	 interpreting	 this	 result.	 For	 example,	 removing	 points	
larger	than	two	SDs	away	from	the	mean	on	both	variables	makes	this	
positive	correlation	non-significant.

To	 further	 investigate	 these	 relationships	 above,	 we	 shift	 our	
focus	 to	 the	 PCA.	 Figure	5	 shows	 the	 two	 principal	 components	
derived	 from	 the	 four	variables:	nestedness	 statistic	 (z-scores	and	
combined	 nestedness),	 number	 of	 species	 (log	 of	 the	 geometric	
mean	of	plants	and	pollinators),	connectance	and	temperature	sea-
sonality.	The	two	components	accounted	for	c.	75%	of	the	variance	
in	the	data.	The	figure	 (Figure	5a,b)	shows	that	using	z-scores,	the	
nestedness	statistic	 is	highly	correlated	with	size	and	connectance	
for	the	probabilistic	and	fixed	models	respectively.	This	association	
can	be	observed	by	noticing	the	same	direction	of	their	correspond-
ing	vectors.	Not	surprisingly,	both	z-scores	were	poorly	correlated	
with	temperature	seasonality,	i.e.	the	vectors	of	the	nestedness	sta-
tistic	and	temperature	seasonality	were	positively	correlated	on	one	
component	but	negatively	on	the	other.	These	results	confirm	pre-
vious	work	showing	that	z-scores	derived	from	different	null	models	
(probabilistic	and	fixed	models)	can	generate	different	patterns	and	
no	 unified	 answers	 (Sebastián-González	 et	al.,	 2015;	 Takemoto	 &	
Kajihara,	2016).

F I G U R E  3   	Comparing	nestedness	across	identically	generated	networks.	For	ensembles	of	1,000	randomly	generated	networks	with	the	
same	unstructured	mechanism	(using	the	equiprobable	model),	the	figure	shows	the	average	nestedness	statistic	(on	a	log	scale	for	visualization	
purposes)	as	function	of	different	values	of	connectance	[0.1;	0.4]	(x-axis)	and	community	size	(20,	40	and	60	species).	The	blue	squares,	orange	
circles	and	green	triangles	correspond	to	the	nestedness	statistic	using	the	z-score	with	probabilistic	model,	z-score	with	fixed	model	and	
the	combined	nestedness	respectively.	Note	that	only	the	combined	nestedness	statistic	displays	a	more	consistent	measure	across	network	
dimensions.	All	error	bars	around	the	average	value	were	negligible.	Because	the	nestedness	statistic	for	the	fixed	model	is	negative,	we	used	
log(z-score	+	10)	for	its	visualization	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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Importantly,	Figure	5c	shows	that	the	combined	nestedness	statis-
tic	has	a	strong	correlation	with	temperature	seasonality.	That	is,	the	
vectors	of	nestedness	and	seasonality	show	similar	directions	on	both	
components.	Note	that	combined	nestedness	statistic	and	tempera-
ture	seasonality	are	nearly	orthogonal	to	connectance	and	size.	These	
qualitative	 results	 did	 not	 change	 by	 removing	 the	 outliers	 defined	
above	from	Figure	4c	(see	Figure	S2).	These	results	then	support	the	
hypothesis	that	more	nested	structures	of	plant–pollinator	networks	
(when	accounting	 for	 the	 intrinsic	 effects	of	 connectance	and	com-
munity	size)	should	be	found	in	more	seasonal	or	environmentally	less	
predictable	locations.

4  | DISCUSSION

A	 central	 line	 of	 research	 on	 the	 study	 of	mutualistic	 communities	
has	been	to	understand	the	extent	to	which	the	structure	of	plant– 
pollinator	 networks	 can	 modulate	 the	 likelihood	 of	 species	 persis-
tence	(Bascompte	&	Jordano,	2013).	Theoretically,	it	has	been	shown	
that	the	nested	structure	of	mutualistic	networks	can	have	important	
consequences	 for	 biodiversity	 maintenance	 (Bastolla	 et	al.,	 2009;	
Rohr	 et	al.,	 2014;	 Saavedra	 et	al.,	 2013;	 Saavedra,	 Rohr,	 Olesen,	
et	al.,	2016).	Thus,	studies	have	been	 investigating	which	ecological	
and	 environmental	 conditions	 could	 be	 associated	with	 an	 increase	

F I G U R E  5   	Identifying	the	direction	of	change	between	nestedness	and	temperature	seasonality.	Using	a	principal	component	analysis	
(Legendre	&	Legendre,	2012),	the	figure	shows	the	two	principal	components	for	the	four	variables	investigated:	number	of	species	(log	of	
the	geometric	mean	of	plants	and	pollinators),	connectance,	nestedness	statistic	and	temperature	seasonality.	The	arrows	correspond	to	the	
four	associated	eigenvectors,	and	each	small	dot	corresponds	to	one	of	the	43	observed	plant–pollinator	networks	(with	environmental	data).	
Note	that	the	bottom	and	left	axes	correspond	to	the	scaled	values,	whereas	the	top	and	right	axes	correspond	to	the	vector	loadings.	(a–c)	
It	correspond	to	the	nestedness	statistic	using	the	z-score	with	probabilistic	model,	z-score	with	fixed	model,	and	the	combined	nestedness	
respectively.	Note	that	only	the	combined	nestedness	statistic	(c)	displays	a	strong	overlap	with	temperature	seasonality,	and	both	are	almost	
orthogonal	to	connectance	and	number	of	species	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Comp.1

C
om

p.
2

−5 0 5

Nestedness (probabilistic)

Connectance
Species

T_Seasonality

(a)

Comp.1

C
om

p.
2

−5 0 5

Nestedness (fixed)

Connectance

Species

T_Seasonality

(b)

−0.4 −0.2 0.0 0.2 0.4

−4
−2

0
2

4
6

−0.4 −0.2 0.0 0.2 0.4

−4
−2

0
2

4
6

−0.4 −0.2 0.0 0.2 0.4

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Comp.1

C
om

p.
2

−5 0 5

−4
−2

0
2

4
6

Nestedness (combined)

Connectance

Species

T_Seasonality

(c)

F I G U R E  4   	Association	of	temperature	seasonality	with	nestedness	statistics.	For	43	observed	plant–pollinator	networks	(with	
environmental	data),	(a–c)	illustrate	the	association	of	the	scaled	temperature	seasonality	(x-axis)	with	the	nestedness	statistic	derived	from	
the	probabilistic	model,	the	fixed	model	and	the	combined	nestedness	(scaled	values)	respectively.	Each	point	corresponds	to	one	of	the	43	
networks.	The	solid	lines	correspond	to	the	linear	regression	(intended	to	guide	the	eye),	and	r	corresponds	to	the	Pearson	correlation	(only	the	
correlation	with	combined	nestedness	statistic	was	significant	at	the	5%	confidence	level)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.
com]
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of	 these	nested	structures	 in	mutualistic	networks	 (Dalsgaard	et	al.,	
2013;	Gilarranz	et	al.,	2015;	Nielsen	&	Bascompte,	2007;	Sebastián-
González	 et	al.,	 2015;	Takemoto	&	Kajihara,	 2016;	Takemoto	 et	al.,	
2014;	Trøjelsgaard	&	Olesen,	2013;	Welti	&	Joern,	2015).

Unfortunately,	 there	 has	 not	 been	 a	 unified	 answer	 regarding	
the	 environmental	modulators	 of	 nestedness.	However,	 as	we	have	
shown	 in	 this	manuscript,	 the	comparative	approach	 (z-scores)	used	
by	previous	studies	has	important	statistical	limitations	and	problems	
related	to	inconsistency.	Z-scores	provide	no	certainty	that	one	net-
work	 is	more	nested	 than	other,	 they	simply	provide	 information	of	
whether	networks	are	different	or	not	from	a	null	model	 (Gelman	&	
Stern,	2006;	Johnson,	1999).	Therefore,	z-scores	can	be	used	to	reveal	
patterns	relative	to	null	expectations,	but	they	should	not	be	used	to	
compare	nestedness	across	different	networks,	or	to	analyse	the	asso-
ciation	of	nestedness	with	community	persistence	and	other	environ-
mental	factors.	Note	that	this	concern	is	not	unique	to	nestedness	in	
plant–pollinator	networks,	these	standardized	values	have	been	used	
extensively	to	compare	different	structural	properties	across	ecolog-
ical	networks.

To	address	this	problem,	we	have	proposed	to	use	a	normalized	and	
combined	nestedness	statistic	to	provide	an	independent	relationship	
between	 nestedness	 and	 other	 network	 descriptors,	 especially	 net-
work	size	and	connectance.	This	combined	statistic	takes	into	account	
the	realized	maximum	values	of	nestedness	in	a	network,	and	combines	
the	key	descriptors	of	connectance	and	size	as	nonlinear	penalties	for	
nestedness.	 In	 fact,	our	PCA	analysis	has	 shown	 that	 this	 combined	
statistic	is	almost	orthogonal	to	connectance	and	size,	making	it	a	good	
candidate	for	comparison	purposes	(Legendre	&	Legendre,	2012;	Zar,	
2010).	Yet,	the	reader	is	encouraged	to	find	other	comparative	metrics	
appropriate	for	their	own	research	questions	taking	into	account	the	
statistical	and	 inconsistency	problems	we	have	previously	discussed.	
Note	that	the	combined	nestedness	statistic	must	not	be	interpreted	
in	the	same	way	as	raw	nestedness.	It	also	does	not	answer	whether	a	
network	is	significantly	nested	or	not.	This	measure	only	gives	the	level	
of	nestedness	relative	to	the	interaction	of	other	network	descriptors	
and	constraints,	which	only	provides	a	fair	statistical	ground	for	com-
parison	purposes	(Legendre	&	Legendre,	2012).

Why,	then,	are	some	plant–pollinator	networks	more	nested	than	
others?	Recent	theoretical	studies	have	pointed	out	that	nestedness	
can	 modulate	 the	 structural	 stability	 of	 the	 persistence	 of	 plant– 
pollinator	 communities	 (Rohr	 et	al.,	 2014;	 Saavedra,	 Rohr,	 Olesen,	
et	al.,	 2016).	That	 is,	 under	 the	 same	 levels	 of	mutualistic	 strength,	
nestedness	 can	 theoretically	 increase	 the	 range	 of	 environmental	
conditions	compatible	with	species	coexistence.	This	effect	could	be	
particularly	 advantageous	 when	 communities	 are	 subject	 to	 highly	
changing	 (less	 predictable)	 environments	 (Levins,	 1968;	 Margalef,	
1968;	May,	 1975;	 Odum,	 1969).	 However,	 under	 low	 environmen-
tal	stochasticity	 (Rohr	et	al.,	2016;	Saavedra,	Rohr,	Fortuna,	Selva,	&	
Bascompte,	2016;	Saavedra,	Rohr,	Gilarranz,	&	Bascompte,	2014),	in-
creasing	nestedness	may	be	costly	for	some	species	in	the	community	
(Saavedra,	 Stouffer,	Uzzi,	&	Bascompte,	 2011).	Thus,	we	 should	 ex-
pect	to	see	more	nested	structures	under	unpredictable	environments	
leading	to	random	environmental	perturbations.

Using	a	comparable	measure	of	nestedness	across	networks,	our	
findings	support	the	hypothesis	above	stating	that	nestedness	should	
increase	 under	more	 seasonal	 or	 changing	 environments.	Note	 that	
this	finding	does	not	rely	on	the	fact	that	a	plant–pollinator	network	
can	be	more	or	less	nested	that	expected	by	chance.	It	only	provides	
information	 about	 the	 conditions	 under	 which	 nested	 structures	
should	be	more	advantageous	and	occur	more	often.	One	should	not	
always	make	 equivalent	 the	 difficulty	 of	 detecting	 a	 structural	 pat-
tern	in	a	network	to	the	dynamical	implications	of	such	structure	(e.g.	
Strona	&	Veech,	2015).

We	have	used	temperature	variance	as	a	proxy	for	changing	en-
vironments;	however,	future	work	could	explore	the	extent	to	which	
other	variables	can	provide	a	better	proxy	for	how	environments	are	
randomly	changing	in	relation	to	the	community	under	investigation.	
We	would	 also	 like	 to	 encourage	others	 to	 further	 test	 these	 ideas	
on	 data	 properly	 designed	 and	 collected	 for	 this	 type	 of	 analysis	
(Trøjelsgaard	 &	 Olesen,	 2016).	 We	 have	 used	 data	 whose	 level	 of	
confidence	have	not	been	assessed,	sampling	protocols	can	be	quite	
different,	 interactions	 represent	 the	 aggregation	 of	 different	 obser-
vation	 periods,	 and	 constituent	 species	 can	 be	 biased	 towards	 par-
ticular	 groups.	Therefore,	 before	 claiming	 any	general	 results	 across	
networks,	 one	would	need	 to	homogenize	 the	use	of	network	data	
to	 properly	 handle	 any	 case	 of	 outliers.	We	 believe	 that	 combining	
appropriate	comparative	metrics,	data,	and	hypotheses	can	lead	to	a	
rigorous	synthesis	between	theory	and	observations	that	 is	 relevant	
for	a	better	understanding	of	the	ecological	processes	driving	the	as-
sembly	and	persistence	of	ecological	communities.
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