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Abstract
1.	 Empirical studies have found that the mutualistic interactions forming the structure 
of plant–pollinator networks are typically more nested than expected by chance 
alone. Additionally, theoretical studies have shown a positive association between 
the nested structure of mutualistic networks and community persistence. Yet, it 
has been shown that some plant–pollinator networks may be more nested than 
others, raising the interesting question of which factors are responsible for such 
enhanced nested structure.

2.	 It has been argued that ordered network structures may increase the persistence of 
ecological communities under less predictable environments. This suggests that 
nested structures of plant–pollinator networks could be more advantageous under 
highly seasonal environments. While several studies have investigated the link be-
tween nestedness and various environmental variables, unfortunately, there has 
been no unified answer to validate these predictions. Here, we move from the 
problem of describing network structures to the problem of comparing network 
structures. We develop comparative statistics, and apply them to investigate the 
association between the nested structure of 59 plant–pollinator networks and the 
temperature seasonality present in their locations.

3.	 We demonstrate that higher levels of nestedness are associated with a higher tem-
perature seasonality. We show that the previous lack of agreement came from an 
extended practice of using standardized measures of nestedness that cannot be 
compared across different networks.

4.	 Importantly, our observations complement theory showing that more nested net-
work structures can increase the range of environmental conditions compatible 
with species coexistence in mutualistic systems, also known as structural stability. 
This increase in nestedness should be more advantageous and occur more often in 
locations subject to random environmental perturbations, which could be driven by 
highly changing or seasonal environments. This synthesis of theory and observa-
tions could prove relevant for a better understanding of the ecological processes 
driving the assembly and persistence of ecological communities.
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1  | INTRODUCTION

Plant–pollinator networks are the synthesis of mutualistic interactions 
between flowering plants and their pollinators co-occurring in a given 
local site and time frame (Bascompte & Jordano, 2013). These net-
works are considered to have a structure more nested than expected 
by chance alone (Bascompte, Jordano, Melián, & Olesen, 2003). That 
is, if one compares the observed networks against random networks 
where the interactions have been arbitrarily shuffled, one typically ob-
serves an over-representation of shared mutualistic interactions be-
tween specialist (species with few interactions) and generalist species 
(species with many interactions). Traditionally, this nested structure 
refers to the network topology (i.e. the presence or absence of interac-
tions). While quantitative measures of nestedness have been proposed 
(Almeida-Neto & Ulrich, 2011; Staniczenko, Kopp, & Allesina, 2013), 
their application to observed networks is still limited for two main rea-
sons: theoretically it has been shown that the topology and the inter-
action strength of mutualistic networks play a separate role in shaping 
species persistence (Rohr, Saavedra, & Bascompte, 2014; Saavedra, 
Rohr, Dakos, & Bascompte, 2013), and the frequency of interactions is 
not enough to parameterize interaction strengths (Schupp, Jordano, & 
Gómez, 2017). These results have generated a rich research agenda on 
understanding the factors modulating the nested structure (topology) 
of mutualistic networks in general (Bascompte & Jordano, 2013).

Importantly, seminal work has predicted that more ordered net-
work structures (as opposed to random network structures) should be 
found in less predictable environments (Levins, 1968; Margalef, 1968; 
May, 1975; Odum, 1969). The rationale is that under less predictable 
environments, species may enhance their tolerance to external distur-
bances through well-structured communities. In this line, theoretical 
work has shown that a nested structure in plant–pollinator networks 
can enhance species coexistence by minimizing species competition, 
and by increasing the range of intrinsic conditions leading to positive 
species abundances (Bastolla et al., 2009; Rohr et al., 2014; Saavedra, 
Rohr, Olesen, & Bascompte, 2016; Saavedra & Stouffer, 2013). For 
instance, recent work has shown that by keeping the same level of 
mean interaction strength, the more nested a structure in a mutualistic 
system, the more tolerant the community would be to random per-
turbations to intrinsic growth rates (Rohr et al., 2014; Saavedra, Rohr, 
Olesen, et al., 2016). This tolerance is also known as the structural 
stability of community persistence (Rohr et al., 2014; Saavedra et al., 
2017). Thus, it can also be predicted that nested network structures 
should be more advantageous and occur more often in locations sub-
ject to highly changing or seasonal environments.

Several studies have pointed to different environmental and  
anthropogenic factors as modulators of the nested pattern of plant–
pollinator networks; however, little agreement has been found on spe-
cific effects (Dalsgaard et al., 2013; Sebastián-González, Dalsgaard, 
Sandel, & Guimarães, 2015; Takemoto & Kajihara, 2016; Takemoto, 
Kanamaru, & Feng, 2014; Trøjelsgaard & Olesen, 2013; Welti & Joern, 
2015). For example, looking at the association between nestedness 
and temperature seasonality, different studies have found both a 
negative and a positive relationship (Sebastián-González et al., 2015; 

Takemoto & Kajihara, 2016). Undoubtedly, knowing the reasons for 
these contrasting findings can allow us to increase our understanding 
about the processes modulating the nested structure and potentially 
the persistence of ecological communities. One candidate explanation 
for these differences is the statistical analysis itself, in which case the 
effect of predictor variables could be difficult to reconcile as many 
different correlated environmental and ecological variables are con-
tinuously added into multivariate regression analyses (Legendre & 
Legendre, 2012). A more fundamental problem, however, could be 
a misuse of the statistical metrics employed to compare across net-
works. In such case, this problem could be corrected and applied 
across studies. In this manuscript, to test the predictions above, we 
review comparative metrics of nestedness, signal important misuses, 
and provide a methodology to correct them. Then, we apply the new 
proposed metrics to observed plant–pollinator networks and environ-
mental data to investigate whether more nested structures are found 
in more seasonal locations.

2  | MATERIALS AND METHODS

In this section, first we will define how we calculate nestedness. Then 
we will show how this measure has been used to compare nestedness 
across networks. Then we will present the limitations of current com-
parative approaches. Then we will develop a new statistic to correct 
for these limitations. Finally we will show how we investigate the link 
between nestedness and temperature seasonality.

To calculate nestedness, we used a standard measure known as 
NODF (Almeida-Neto, Guimarães, Guimarães, Loyola, & Urlich, 2008). 
In fact, several metrics of nestedness have been proposed since it 
was first introduced in the field of island biogeography by Atmar and 
Patterson (1993) and then applied to mutualistic networks (Bascompte 
et al., 2003). Today, one of the most intuitive measures of nestedness 
is NODF, which has shown to be a consistent metric based on two 
basic properties derived from the original concept of nestedness: spe-
cies can be arranged in decreasing order according to their number of 
mutualistic partners, and the mutualistic partners of species with few 
interactions are typically shared with species with more interactions 
(Almeida-Neto et al., 2008). Note that other measures of nestedness 
are highly correlated to NODF (Saavedra et al., 2013; Ulrich, Almeida-
Neto, & Gotelli, 2009).

However, NODF (as other measures of network structure) is not 
exempt from having strong correlations with other network descrip-
tors (Ulrich et al., 2009). For instance, using a set of 59 plant–pollina-
tor networks extracted from the public repository web–of–life.es, 
Figure 1a,b show, respectively, the strong positive and negative associ-
ation of NODF with connectance and number of species in the network 
(r = .86 and −.71, Pearson correlation). Note that connectance is defined 
as the fraction of observed interactions relative to the maximum pos-
sible, while the number of species is calculated by the geometric mean 
of plants and pollinators. These relationships become even more en-
tangled as connectance and the number of species are also highly cor-
related (r = −.81, Pearson correlation). Overall, these strong correlations 
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imply that the raw values of NODF cannot be used to compare nested-
ness across different networks (Ulrich et al., 2009). Note that these 59 
plant–pollinator networks correspond to the aggregated observations 
of pollinator visitations over different periods of time, meaning that the 
structures and therefore the correlations must be taken with caution 
(Trøjelsgaard & Olesen, 2016). Yet, it has been shown that plant–polli-
nator networks can display consistent structures even at the daily level 
(Saavedra, Rohr, Olesen, et al., 2016).

Additionally, measures such as NODF, are constructed between 
some boundary values. For instance, NODF   ∈ [0, 1], where the 
higher the value, the higher the nested structure of the network. 
Nevertheless, because of the constraints imposed by the number of 
species and interactions, the realized minimum and maximum values 
for these measures can be different from those initially expected 
(Rohr et al., 2014; Saavedra, Rohr, Olesen, et al., 2016). Using NODF 
and without assuming any additional constraints other than the num-
ber of species and interactions, by construction, the minimum values 
are almost zero for all the observed 59 plant–pollinator networks 
(Almeida-Neto et al., 2008). However, the maximum values can be 
significantly less than one (Rohr et al., 2014; Saavedra, Rohr, Olesen, 
et al., 2016). These maximum values can be found using a greedy 
algorithm (Cormen, Leiserson, Rivest, & Stein, 1990). Specifically, 
starting with a minimum requirement of a plant–pollinator network 
(each pollinator interacts with at least one plant), we added a new 
interaction by choosing the one that would give the highest NODF 
out of all combinations. We iterated this process until the number 
of observed interactions is reached (R-code provided in Song, Rohr, 
& Saavedra, 2017). In our dataset, maximum values range in [0.48, 
0.96] and are positively correlated (r = .37, Pearson correlation) with 
the observed value of NODF (see Figure 1c). This further reveals that 
NODF values need to be normalized by their realized maximum val-
ues to be used as a fair comparison measure of nestedness across 
networks.

To correct for some of the problems mentioned above, studies have 
been comparing nestedness across networks using z-scores (Dalsgaard 
et al., 2013; Gilarranz, Sabatino, Aizen, & Bascompte, 2015; James, 
Pitchford, & Plank, 2013; Nielsen & Bascompte, 2007; Sebastián-
González et al., 2015; Takemoto & Kajihara, 2016; Takemoto et al., 
2014; Trøjelsgaard & Olesen, 2013; Welti & Joern, 2015). These stan-
dardized values are defined as z = (NODF − μ)/σ, where μ and σ are the 
mean and SD of the distribution of NODF values (or any other measure 
of nestedness) generated by a chosen null model. The most common null 
models are known as the equiprobable, probabilistic and fixed models 
(Bascompte et al., 2003; Ulrich et al., 2009). The equiprobable model as-
signs the same probability to each potential interaction in the network. 
The probabilistic model assigns a probability to each potential interac-
tion proportional to the number of observed interactions between mu-
tualistic partners. Note that the equiprobable and probabilistic models 
provide almost identical results (Ulrich et al., 2009). The fixed model 
randomly shuffles the interactions while preserving the observed num-
ber of mutualistic partners of each species. In general, when comparing 
two networks, the one with the higher z-score is considered to be more 
nested (James et al., 2013). However, z-scores should not be used for 
comparison purposes for two main reasons: one statistical and one re-
lated to inconsistency problems (Gelman & Stern, 2006; Johnson, 1999).

The statistical problem has to do with the fact that the z-score 
strongly depends on network size. Recall that the z-score is computed 
by dividing the difference between the observed level of nestedness 
(NODF) and the expected level (under the null model) by the SD of 
the null model. Nevertheless, the SD decreases as the inverse of the 
square root of the number of species (see Figure 2a). In fact, this SD 
has the same scaling property as a standard error in statistics (Zar, 
2010). Consequentially, rejecting the null hypothesis or having a high 
z-score becomes easier to achieve under large networks.

To illustrate this situation, for different numbers of species, we ran-
domly generated 1,000 networks using the equiprobable model (other 

F I G U R E  1    Association of nestedness with other network descriptors and constraints. For 59 observed plant–pollinator networks, (a) and (b) 
show the positive and negative association of nestedness (NODF) with connectance and number of species (log of geometric mean of plants and 
pollinators) respectively. Results are qualitatively the same if the number of species is calculated by the log of the sum of plants and pollinators. 
(c) It illustrates the positive association between nestedness (NODF) and the maximum value of nestedness that can be reached in the 
corresponding network (calculated using a greedy algorithm). Each point corresponds to one of the 59 networks. The red lines correspond to the 
linear regression (intended to guide the eye), and r corresponds to the Pearson correlation (all correlations were significant at the 5% confidence 
level) [Colour figure can be viewed at wileyonlinelibrary.com]
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null models lead to the same conclusions), calculated their NODF 
values, and computed their SD (σ) and standard region of acceptance 
(μ + 2σ, equivalent to z = 2). These random networks had a fixed con-
nectance of 0.3 and vary in size from 50 to 350 species (other param-
eter values lead to the same conclusion). Figure 2 shows that the SD 
of these networks decreases as a nonlinear function of the number of 
species, consequently making the region of acceptance proportionally 
smaller. This implies that raw values of NODF will more likely fall out-
side the region of acceptance (larger z-scores) in large networks. Thus, 
we cannot fairly conclude that a network with a z-score of 3 is more 
nested than a smaller network with a z-score of 2 (Gelman & Stern, 
2006; Johnson, 1999).

The problem related to inconsistency relates to the fact that even 
if we grant that z-scores from different networks may be compared, 
these z-scores are inconsistent across different levels of connectance 
and number of species. This statement can be derived from the fact 
that a z-score is equivalent to a p-value in statistics, which is only valid 
for a particular data and model (Gelman & Stern, 2006; Johnson, 1999; 
Legendre & Legendre, 2012). That is, unless z-scores are generated 
from networks with the same descriptors (connectance, size, etc.), the 
probability distribution of values generated by any null model would 
be different. This inconsistency problem limits the capacity of z-scores 
to detect structural similarities between different networks, even 
when these networks are generated with the same mechanism.

To illustrate the problem of z-scores related to inconsistency, we 
constructed 1,000 random networks using the equiprobable model 
(with different connectance and sizes), calculated their NODF val-
ues, computed the expected z-score (using the probabilistic and 
fixed models), and checked whether the expected z-scores changed 
across networks with different sizes and connectance. The randomiza-
tions used to calculate the expected z-scores are done following the 
equiprobable model using upper triangular matrices (all interactions 
are zero below the main diagonal). This is done in order to increase 
the accuracy of the expectations by decreasing the sampling space 
(results are qualitatively the same without this restriction). This was 

repeated for different sizes (between 20 and 60 species) and different 
values of connectance (between 0.1 and 0.4). Because all networks 
are constructed in the exact same unstructured way (i.e. following 
the equiprobable model), there is no reason to expect that an aver-
age network generated with given parameters should be more or less 
nested than an average network generated with other parameters. 
Any potential difference should be simply a consequence of changing 
connectance and size. While it is believed that z-scores should control 
for these potential differences, Figure 3 clearly shows that both the 
probabilistic and fixed models continue to display significant differ-
ences in the expected z-scores as function of connectance and size. 
This confirms that z-scores are not a consistent statistical measure of 
nestedness across networks.

To compare nestedness across networks and be able to investi-
gate its association with temperature seasonality, we need to develop 
nestedness statistics with independent properties from maximum 
nestedness, network size and connectance. To do this, we can prop-
erly normalize nestedness values and combine them with network 
descriptors (Legendre & Legendre, 2012; Zar, 2010). Because we 
know that the maximum value of nestedness is not the same for 
every network (see Figure 1c), a good candidate for normalization is 
the value of nestedness relative to its maximum possible value, i.e. 
NODFn = NODF∕max(NODF). Additionally, as we know that connec-
tance and size are strong modifiers of nestedness, we can combine 
these network descriptors with our normalized value of nestedness 
to control for these effects. Here, we used the simplest multiplicative 
interaction given by NODFc = NODFn∕(C ⋅ log(S)), where C and log(S) 
are the connectance and the log of the geometric mean of plants and 
pollinators in the network (results are qualitatively the same if using 
the log of the sum of plants and animals). Note that we use log(S) in-
stead of the raw number of species because only with log(S), NODFc 
remains independent from network size (see Figure S1).

To test the combined nestedness statistic, we repeated the con-
sistency analysis above, but we replaced the z-scores with NODFc.  
Figure 3 confirms that the combined nestedness statistic is in fact 

F I G U R E  2    Dependency of null models on data points. Calculating NODF on randomly generated matrices (using the equiprobable model), 
the figure shows the SD (σ) and the standard maximum value of acceptance of the null hypothesis (μ + 2σ, equivalent to z-score = 2) as a 
function of the number of species on a log scale (data points). Each point is generated by sampling random interactions matrices (1's and 0's) 
with a fixed connectance of 0.3. Note that the number of species modulates the SD (a), which in turn, modulates proportionally the z-score (b)
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consistent across network size and connectance. This shows that a 
combined statistic can be a more reliable measure than z-scores to 
compare nestedness across networks. Importantly, the consistency of 
this combined statistic allows our investigation of the potential associ-
ation between nestedness and temperature seasonality.

Finally, to test the hypothesis that nestedness should increase 
under changing environmental conditions, we investigated the asso-
ciation between the combined nestedness statistic (NODFc) and the 
level of temperature seasonality (variance of daily temperature) in dif-
ferent locations around the world. The latitude and longitude of the 
observed plant–pollinator networks were obtained from the public re-
pository web-of-life.es. Environmental data were obtained from 
the public repository WorldClim (version 1.4, release 3, resolution 2.5 
min). Using these repositories, we gathered environmental data for 43 
out of the 59 networks. We did not find information about the other 
16 networks (network and temperature data are provided in Song 
et al., 2017). To study the direct relationship between the combined 
nestedness statistic and temperature seasonality, first we used a sim-
ple correlation analysis. Because it is not expected that only one factor 
(e.g. temperature seasonality) should perfectly explain the structure 
of ecological networks (Trøjelsgaard & Olesen, 2016), we also used 
a standard principal component analysis (PCA; Legendre & Legendre, 
2012). This approach allowed us to project the multidimensional vari-
ation of the dataset into fewer dimensions (principal components). We 
used the combined nestedness statistic, log(S), connectance and tem-
perature seasonality as variables in our PCA. Thus, the PCA illustrates 
the correlations between these variables and how they explain the 
variances in the data. Additionally, we compared the correlation and 
PCA results against the results from standardized values of nestedness 
(z-scores).

3  | RESULTS

Focusing on the simple correlations between the nestedness statis-
tics and temperature seasonality, Figure 4a,b shows that the z-scores 
derived from the probabilistic and the fixed models have nearly a null 
correlation (r = .02 and −.07, Pearson correlation). In contrast, the 
figure (Figure 4c) shows that the combined nestedness statistic has 
a positive correlation with temperature seasonality (r = .27, Pearson 
correlation). Note that both the outliers and the low correlation warn 
caution on interpreting this result. For example, removing points 
larger than two SDs away from the mean on both variables makes this 
positive correlation non-significant.

To further investigate these relationships above, we shift our 
focus to the PCA. Figure 5 shows the two principal components 
derived from the four variables: nestedness statistic (z-scores and 
combined nestedness), number of species (log of the geometric 
mean of plants and pollinators), connectance and temperature sea-
sonality. The two components accounted for c. 75% of the variance 
in the data. The figure (Figure 5a,b) shows that using z-scores, the 
nestedness statistic is highly correlated with size and connectance 
for the probabilistic and fixed models respectively. This association 
can be observed by noticing the same direction of their correspond-
ing vectors. Not surprisingly, both z-scores were poorly correlated 
with temperature seasonality, i.e. the vectors of the nestedness sta-
tistic and temperature seasonality were positively correlated on one 
component but negatively on the other. These results confirm pre-
vious work showing that z-scores derived from different null models 
(probabilistic and fixed models) can generate different patterns and 
no unified answers (Sebastián-González et al., 2015; Takemoto & 
Kajihara, 2016).

F I G U R E  3    Comparing nestedness across identically generated networks. For ensembles of 1,000 randomly generated networks with the 
same unstructured mechanism (using the equiprobable model), the figure shows the average nestedness statistic (on a log scale for visualization 
purposes) as function of different values of connectance [0.1; 0.4] (x-axis) and community size (20, 40 and 60 species). The blue squares, orange 
circles and green triangles correspond to the nestedness statistic using the z-score with probabilistic model, z-score with fixed model and 
the combined nestedness respectively. Note that only the combined nestedness statistic displays a more consistent measure across network 
dimensions. All error bars around the average value were negligible. Because the nestedness statistic for the fixed model is negative, we used 
log(z-score + 10) for its visualization [Colour figure can be viewed at wileyonlinelibrary.com]
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Importantly, Figure 5c shows that the combined nestedness statis-
tic has a strong correlation with temperature seasonality. That is, the 
vectors of nestedness and seasonality show similar directions on both 
components. Note that combined nestedness statistic and tempera-
ture seasonality are nearly orthogonal to connectance and size. These 
qualitative results did not change by removing the outliers defined 
above from Figure 4c (see Figure S2). These results then support the 
hypothesis that more nested structures of plant–pollinator networks 
(when accounting for the intrinsic effects of connectance and com-
munity size) should be found in more seasonal or environmentally less 
predictable locations.

4  | DISCUSSION

A central line of research on the study of mutualistic communities 
has been to understand the extent to which the structure of plant– 
pollinator networks can modulate the likelihood of species persis-
tence (Bascompte & Jordano, 2013). Theoretically, it has been shown 
that the nested structure of mutualistic networks can have important 
consequences for biodiversity maintenance (Bastolla et al., 2009; 
Rohr et al., 2014; Saavedra et al., 2013; Saavedra, Rohr, Olesen, 
et al., 2016). Thus, studies have been investigating which ecological 
and environmental conditions could be associated with an increase 

F I G U R E  5    Identifying the direction of change between nestedness and temperature seasonality. Using a principal component analysis 
(Legendre & Legendre, 2012), the figure shows the two principal components for the four variables investigated: number of species (log of 
the geometric mean of plants and pollinators), connectance, nestedness statistic and temperature seasonality. The arrows correspond to the 
four associated eigenvectors, and each small dot corresponds to one of the 43 observed plant–pollinator networks (with environmental data). 
Note that the bottom and left axes correspond to the scaled values, whereas the top and right axes correspond to the vector loadings. (a–c) 
It correspond to the nestedness statistic using the z-score with probabilistic model, z-score with fixed model, and the combined nestedness 
respectively. Note that only the combined nestedness statistic (c) displays a strong overlap with temperature seasonality, and both are almost 
orthogonal to connectance and number of species [Colour figure can be viewed at wileyonlinelibrary.com]

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Comp.1

C
om

p.
2

−5 0 5

Nestedness (probabilistic)

Connectance
Species

T_Seasonality

(a)

Comp.1

C
om

p.
2

−5 0 5

Nestedness (fixed)

Connectance

Species

T_Seasonality

(b)

−0.4 −0.2 0.0 0.2 0.4

−4
−2

0
2

4
6

−0.4 −0.2 0.0 0.2 0.4

−4
−2

0
2

4
6

−0.4 −0.2 0.0 0.2 0.4

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Comp.1

C
om

p.
2

−5 0 5

−4
−2

0
2

4
6

Nestedness (combined)

Connectance

Species

T_Seasonality

(c)

F I G U R E  4    Association of temperature seasonality with nestedness statistics. For 43 observed plant–pollinator networks (with 
environmental data), (a–c) illustrate the association of the scaled temperature seasonality (x-axis) with the nestedness statistic derived from 
the probabilistic model, the fixed model and the combined nestedness (scaled values) respectively. Each point corresponds to one of the 43 
networks. The solid lines correspond to the linear regression (intended to guide the eye), and r corresponds to the Pearson correlation (only the 
correlation with combined nestedness statistic was significant at the 5% confidence level) [Colour figure can be viewed at wileyonlinelibrary.
com]
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of these nested structures in mutualistic networks (Dalsgaard et al., 
2013; Gilarranz et al., 2015; Nielsen & Bascompte, 2007; Sebastián-
González et al., 2015; Takemoto & Kajihara, 2016; Takemoto et al., 
2014; Trøjelsgaard & Olesen, 2013; Welti & Joern, 2015).

Unfortunately, there has not been a unified answer regarding 
the environmental modulators of nestedness. However, as we have 
shown in this manuscript, the comparative approach (z-scores) used 
by previous studies has important statistical limitations and problems 
related to inconsistency. Z-scores provide no certainty that one net-
work is more nested than other, they simply provide information of 
whether networks are different or not from a null model (Gelman & 
Stern, 2006; Johnson, 1999). Therefore, z-scores can be used to reveal 
patterns relative to null expectations, but they should not be used to 
compare nestedness across different networks, or to analyse the asso-
ciation of nestedness with community persistence and other environ-
mental factors. Note that this concern is not unique to nestedness in 
plant–pollinator networks, these standardized values have been used 
extensively to compare different structural properties across ecolog-
ical networks.

To address this problem, we have proposed to use a normalized and 
combined nestedness statistic to provide an independent relationship 
between nestedness and other network descriptors, especially net-
work size and connectance. This combined statistic takes into account 
the realized maximum values of nestedness in a network, and combines 
the key descriptors of connectance and size as nonlinear penalties for 
nestedness. In fact, our PCA analysis has shown that this combined 
statistic is almost orthogonal to connectance and size, making it a good 
candidate for comparison purposes (Legendre & Legendre, 2012; Zar, 
2010). Yet, the reader is encouraged to find other comparative metrics 
appropriate for their own research questions taking into account the 
statistical and inconsistency problems we have previously discussed. 
Note that the combined nestedness statistic must not be interpreted 
in the same way as raw nestedness. It also does not answer whether a 
network is significantly nested or not. This measure only gives the level 
of nestedness relative to the interaction of other network descriptors 
and constraints, which only provides a fair statistical ground for com-
parison purposes (Legendre & Legendre, 2012).

Why, then, are some plant–pollinator networks more nested than 
others? Recent theoretical studies have pointed out that nestedness 
can modulate the structural stability of the persistence of plant– 
pollinator communities (Rohr et al., 2014; Saavedra, Rohr, Olesen, 
et al., 2016). That is, under the same levels of mutualistic strength, 
nestedness can theoretically increase the range of environmental 
conditions compatible with species coexistence. This effect could be 
particularly advantageous when communities are subject to highly 
changing (less predictable) environments (Levins, 1968; Margalef, 
1968; May, 1975; Odum, 1969). However, under low environmen-
tal stochasticity (Rohr et al., 2016; Saavedra, Rohr, Fortuna, Selva, & 
Bascompte, 2016; Saavedra, Rohr, Gilarranz, & Bascompte, 2014), in-
creasing nestedness may be costly for some species in the community 
(Saavedra, Stouffer, Uzzi, & Bascompte, 2011). Thus, we should ex-
pect to see more nested structures under unpredictable environments 
leading to random environmental perturbations.

Using a comparable measure of nestedness across networks, our 
findings support the hypothesis above stating that nestedness should 
increase under more seasonal or changing environments. Note that 
this finding does not rely on the fact that a plant–pollinator network 
can be more or less nested that expected by chance. It only provides 
information about the conditions under which nested structures 
should be more advantageous and occur more often. One should not 
always make equivalent the difficulty of detecting a structural pat-
tern in a network to the dynamical implications of such structure (e.g. 
Strona & Veech, 2015).

We have used temperature variance as a proxy for changing en-
vironments; however, future work could explore the extent to which 
other variables can provide a better proxy for how environments are 
randomly changing in relation to the community under investigation. 
We would also like to encourage others to further test these ideas 
on data properly designed and collected for this type of analysis 
(Trøjelsgaard & Olesen, 2016). We have used data whose level of 
confidence have not been assessed, sampling protocols can be quite 
different, interactions represent the aggregation of different obser-
vation periods, and constituent species can be biased towards par-
ticular groups. Therefore, before claiming any general results across 
networks, one would need to homogenize the use of network data 
to properly handle any case of outliers. We believe that combining 
appropriate comparative metrics, data, and hypotheses can lead to a 
rigorous synthesis between theory and observations that is relevant 
for a better understanding of the ecological processes driving the as-
sembly and persistence of ecological communities.
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