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1Departamento de Bioloǵıa, Instituto Universitario de Investigación Marina (INMAR),
Universidad de Cádiz, Puerto Real, Spain

2Estación Biológica de Doñana (EBD-CSIC),
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Abstract1

Understanding how vital rates and species interactions vary over time is crucial for predicting2

community responses to environmental change. Considerable progress has been made in3

understanding the drivers of variation in vital rates. However, the question of whether interactions4

are highly plastic and context-dependent, or strongly constrained by internal (e.g., species traits5

and composition) and/or external factors (e.g., environmental conditions) remains unclear. We6

applied a theoretical approach based on the feasibility domain —the range of conditions allowing7

coexistence— to a nine-year dataset of time-changing interactions between annual plants under8

large variability in annual precipitation. Using subcommunities of three species, we found that9

species interactions are strongly constrained, forming a “core-periphery” structure of consistently10

feasible combinations across years. This main finding means that species sample repeatedly a11

restricted range of opportunities for coexistence. Similar findings were obtained for subcommunities12

of four species. Crucially, the constraints to variation in biotic interactions are determined by13

species identity (internal constraints) rather than precipitation or temporal autocorrelation14

(external environmental factors). Furthermore, we found a contrasting effect of precipitation on the15

feasibility of subcommunities. While wetter years increase similarity between subcommunities and16

reduce the overall feasible range, drier years increase dissimilarity between subcommunities and17

increase the probability of coexistence when the conditions seem harsher. These findings suggest18

that constraints to biotic interactions tend to be alike across species in wetter years, but more19

context dependency occurs across species in drier years. Our findings challenge the assumption of20

highly plastic species interactions even in a highly dynamic system of annual plants. Our results21

also highlight the critical importance of internal constraints generated by species identity in22

mediating community persistence and predicting community responses to environmental change.23
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Introduction24

To predict how ecological communities will respond to a changing world, we need to25

understand two intertwined processes: the vital rates of individual species [Bernhardt26

et al., 2020, Boyce et al., 2006], and the complex web of interactions between them27

[Brooker, 2006, Tylianakis et al., 2008]. Organisms of the same species share characteristic28

traits like body size, feeding strategy, or metabolic rates that produce vital rates (survival,29

growth, and reproduction) that differ between species [Adler et al., 2014]. Analogously, the30

characteristic traits of a species determine how often it interacts with other species, the31

kind of interaction, how strong these interactions are, and how symmetric [Pérez-Ramos32

et al., 2019, Strydom et al., 2021]. Together, these two components determine population33

dynamics while also potentially providing species with flexibility to cope with novel34

fast-changing environments. While considerable progress has been made in understanding35

the responses of individual species vital rates [Compagnoni et al., 2021, Slein et al., 2023],36

a critical piece of the puzzle remains missing. Whether and how these interactions37

themselves —the architects of ecosystem stability— shift and reorganize in response to38

environmental variability remains largely unknown. Obtaining this information is critical39

to understand how much environmental variation a community can withstand before losing40

species [Grilli et al., 2017], since species interactions determine what combinations of vital41

rates allow for the persistence of all species in the community [Saavedra et al., 2017].42

Species interactions, as a measure of the effect of one species on the growth rate of another,43

are not fixed. Their strength (weak vs. strong) and sign (positive vs. negative) vary44

markedly across space and time [CaraDonna et al., 2017, Ushio et al., 2018, Zvereva and45

Kozlov, 2021]. Although some species traits or abiotic conditions seem to generate some46
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patterns [Daniel et al., 2024, Maestre and Cortina, 2004], the prevailing view holds that47

most changes in species interactions are highly context-dependent and hence difficult to48

predict [Catford et al., 2022, Chamberlain et al., 2014, Song et al., 2020]. This inherent49

variability and unpredictability raise a fundamental question: Are changes in species50

interactions essentially random, or are they constrained by underlying factors? These51

constraints could arise from either internal community characteristics such as species52

identity with their particular trait profile and evolutionary origin, or from external53

environmental drivers such as rainfall variability. Understanding the nature and strength of54

these constraints is essential for predicting how ecological communities will respond to55

ongoing environmental change and to develop effective conservation strategies [Tylianakis56

et al., 2008].57

To address the dichotomy of the internal versus external forces shaping species58

interactions, we adopt a structuralist approach [Saavedra et al., 2017, Svirezhev and59

Logofet, 1978] that allows scaling up from prior pairwise approaches [Hallett et al., 2019,60

Kraft et al., 2015a] to consider a community-level perspective. Within this approach, a key61

concept is the feasibility domain, which allows quantifying the various constraints on62

species interactions. As an analogy, think of the feasibility domain as a “safe operating63

space” for the community: it represents the range of conditions —such as combinations of64

growth rates— where all species can coexist [Godoy et al., 2018, Saavedra et al., 2017]. A65

larger and more symmetric feasibility domain implies a higher probability of long-term66

community persistence [Allen-Perkins et al., 2023, Song et al., 2018]. While this framework67

has typically been used to analyze communities with fixed interactions [Saavedra et al.,68

2017], we extend it to a dynamic system with changing interactions: how the feasibility69
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domain —a direct reflection of the current interaction network— itself moves and morphs70

in response to environmental change [Song et al., 2018, 2020].71

The dynamic feasibility domain approach allows us to describe how the feasibility domains72

of different years explore the range of possible parameters — growth rates in this case —73

and if their movements between consecutive years are gradual or abrupt. Using this74

technique, we can test three distinct hypotheses about the nature of constraints on species75

interactions (Figure 1). First, strong internal constraints may dictate interactions, driven76

primarily by fixed species traits (e.g., phenology, functional traits) [Daniel et al., 2024,77

Olesen et al., 2011] or taxonomic identity [Godoy et al., 2014]. If this is the case, feasibility78

domains from different years would consistently overlap, forming a core-periphery structure,79

where a central region of the interaction space is consistently feasible (Figure 1 a). Second,80

multiple external constraints could drive shifts between distinct states of species81

interactions. For example, alternating periods of drought and flooding might lead to82

different community configurations or changes in relative abundances [Fujita et al., 2023]83

and, consequently, feasibility domains using distinct areas of the parameter space (Figure 184

b). Third, a lack of strong constraints might result in feasibility domains that vary85

randomly across the parameter space, reflecting a high degree of environmental forcing or86

stochasticity (e.g., strong effect of precipitation or dispersion) in community assembly87

(Figure 1 c). As each scenario provides different distributions of overlaps between feasibility88

domains of consecutive years (Figure 1 d-f), our theoretical framework provides a powerful89

method to distinguish between internal and external constraints on species interactions.90

With our approach, we hypothesize that if internal constraints are dominant, randomizing91

species identities within the interaction matrix should disrupt the core-periphery pattern92
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and the observed temporal conservation of the feasibility domain. In contrast, external93

constraints creating a similar core-periphery structure act through autocorrelation in94

environmental conditions or by species-mediated modifications of the microenvironment.95

For instance, species can gradually build up thick litter layers (e.g., grasses with litter hard96

to decompose) or increase the abundance of natural enemies that persist in the soil (e.g.,97

forbs with large and soft leaves that are attacked by fungi) [Bever, 2003, Bever et al.,98

2015]. If these externally driven, time-dependent processes are the main constraint, then99

the order in which species interactions occur over time becomes crucial. Specifically,100

interaction matrices from consecutive years should be more similar than those from more101

distant years. Therefore, randomizing the temporal order of these matrices should102

eliminate this time-dependent similarity (temporal autocorrelation) and allow an103

assessment of origin of the constraints.104

We test these hypotheses using a unique, nine-year dataset of temporal variation in species105

interactions in a Mediterranean grassland community (Doñana National Park, Spain). This106

system is characterized by annual plants from diverse taxonomic groups, experiencing107

highly variable annual precipitation (Appendix S1: Figure S4), making it an ideal system108

for investigating to what extent internal constraints versus environmental variability shape109

species interactions. By integrating detailed field observations with our structuralist110

approach, we provide the first empirical assessment of the constraints governing species111

interaction variation in a multi-species natural community.112
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Methods113

Study system114

We collected data from our field site in Caracoles Ranch, a natural grassland with no cattle115

present, located within Doñana National Park (SW Spain 37.07◦ N, 6.31◦ W). The area has116

a Mediterranean climate with a mean temperature of 17.5◦ C and a mean precipitation of117

460 mm for the period 2000-2023. A small slope generates a gradient of soil salinity and118

humidity. Vegetation on this site is dominated by annual plant species, with perennial119

species barely present.120

In September 2014, we established nine plots of 8.5 m x 8.5 m along this environmental121

gradient, divided into three blocks of three. Plots were separated by an average distance of122

30 m (minimum 20 m) and blocks by an average distance of 300 m. Each plot was divided123

into 36 subplots of 1 x 1 m with corridors of 0.5 m in between to allow access for124

measurements. For nine growing seasons (2015-2023), we measured abundances of every125

species in every subplot. We used nine interaction matrices (one per year), previously126

estimated from these field observations following a methodology already used and tested127

[Garćıa-Callejas et al., 2021], for the seven most common species that were present every128

year in every plot (Appendix S1: Table S1). These matrices characterize the interaction129

structure of this community every year by including the per capita effects of each species130

on itself and on all other species.131

Feasibility domains and overlap132

Our approach was to use mainly subcommunities of triplets of species as our unit of133

analysis, giving a total of 35 combinations of species, although we also extended our134
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evaluation’s main findings to subcommunities of four species (Appendix S1: Figure S3).135

We chose these levels of richness because, while offering some of the complexity of136

multispecies systems beyond simple pairs, they produce feasibility domains big enough to137

create patterns of overlap and, in addition, the three species case can be graphically138

represented in two dimensions for an easier interpretation. Note that this approach works139

for combinations of three and four species from the total of seven species with available140

interactions data. But, as the size of the feasibility domain depends on the number of141

species [Dougoud et al., 2018], we cannot approach each subcommunity to the total142

number of species because feasibility domains tend to become smaller and the overlap143

patterns eventually disappear. For those particular cases, the alternative would be to144

measure the distance between centroids or the nearest sides of consecutive feasibility145

domains. We calculated the feasibility domain for each combination of subcommunity and146

year from the corresponding matrix of interactions. Assuming that the population147

dynamics in a community can be approximated by a Lotka-Volterra system, we define as148

feasible equilibria of that system those where all species have positive abundances. The149

region of the parameter space of intrinsic growth rates that leads to feasible equilibria150

given an interaction matrix is known as the feasibility domain [Saavedra et al., 2017, Song151

et al., 2018]. We calculated the size of the feasibility domain as the normalized solid angle152

Ω(A) that is equal to the probability of sampling uniformly a vector of intrinsic growth153

rates on the unit sphere inside the feasibility domain [Song et al., 2018]. The normalized154

solid angle Ω(A) can be defined as155

Ω(A) = vol(DF (A) ∩ BS)
vol(BS) (1)
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where BS is the closed unit ball in dimension S. We calculated the overlap between pairs of156

feasibility domains as the shared normalized solid angle Ω(A ∩ B) [Song et al., 2018], that157

is the range of conditions under which the community is feasible under both matrices. We158

calculated the overlap between pairs in three different scenarios:159

1. Overlaps between feasibility domains of observed matrices in the observed order.160

2. Overlaps between feasibility domains of matrices with their elements randomized in161

the observed order.162

3. Overlaps between feasibility domains of observed matrices in a randomized order.163

In our analytical design, to numerically estimate the differences in mean overlap between164

different scenarios with triplets, we applied a multi-membership mixed model for repeated165

measures to the overlap data. In that model, we incorporated the differences in mean166

overlap created by species identity nested in our subcommunities, since different167

subcommunities are not fully independent from each other, but rather they share species.168

We did it by implementing a presence/absence matrix of species in each observation (mean169

accumulated overlap for a triplet and 2-9 years) as a random factor.170

Environmental effects171

To examine the effect of environmental variability, we also compiled precipitation data172

from the nearest meteorological station for the years 2015-2023 in the form of mm of173

precipitation per hydrological year (September - August) (Appendix S1: Figure S4,174

Estación Meteorológica de Aznalcázar, Junta de Andalućıa). For this analysis, we175

calculated similarity between matrices of all subcommunities in every year as the inverse of176

the Euclidean distance calculated as177
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d(A, B) =
√√√√ n∑

i=1

n∑
j=1

(aij − bij)2 (2)

where the distance between two matrices (A, B) is estimated as the square root of the sum178

of the squares of the differences between elements aij and bij for every position ij. We also179

calculated mean size (Ω) of the feasibility domains in every year, and then we compared180

these variables against precipitation of the corresponding hydrological year (September -181

August). For each variable, we calculated the slope of the linear regression against182

precipitation with a 95% confidence interval and Spearman’s correlation.183

All analyses and figures were implemented using R v4.5.0 [R Core Team, 2024] and184

packages tidyverse [Wickham et al., 2019], feasoverlap [Song et al., 2018], ggtern [Hamilton185

and Ferry, 2018], lme4 [Bates et al., 2015], and proxy [Meyer and Buchta, 2022].186

Results187

We found that species interactions are highly structured across the nine years. Rather than188

exhibiting random variation, we found strong evidence for internal constraints shaping the189

dynamics of these interactions. The feasibility domains, representing all feasible190

combinations of intrinsic growth rates for the case of three-species subcommunities, were191

not randomly distributed across the parameter space. Instead, we observed a distinct192

core-periphery structure (Figure 2, Appendix S1: Figure S1): certain regions of the193

parameter space are consistently feasible across years, forming a “core”, while other regions194

are only transiently feasible, constituting the “periphery”. This finding is a priori195

surprising for a strong dynamical system such as ours, where annual plant species complete196
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their entire life cycle within a single year, and the community studied experiences strong197

interannual environmental variation. Thus, this persistence of the core-periphery structure198

strongly suggests underlying constraints that operate despite these dynamic forces.199

To differentiate between internal and external constraints, we compared the overlap of200

feasibility domains between consecutive years in three scenarios: the observed time series,201

randomized time series (with interaction coefficients shuffled within matrices), and202

disordered time series (with the temporal order of matrices randomized) (Figure 3). This203

comparison rigorously accounted for repeated measurements through time and the204

non-independence of subcommunities (see Methods). Our results demonstrate that the205

degree of overlap in the observed time series significantly exceeded that of both the206

randomized and disordered scenarios (Figure 3 a). Notably, the largest difference was207

observed between the observed and randomized-interactions scenarios, with only a slight208

difference between the observed and disordered-time-series scenarios. These results209

strongly suggest that, in this system, internal constraints are the primary drivers of the210

core-periphery structure, with a smaller contribution from temporal autocorrelation in the211

structure of species interactions.212

Given the dominance of internal constraints, a remaining question is what role the213

environmental variability plays in our study system. We found that annual precipitation, a214

known driver of community dynamics in this system [Godoy et al., 2024], exerts a complex215

influence on the feasibility domains. Years with higher precipitation are associated with a216

significant reduction in the average size (Ω) of the feasibility domains across217

subcommunities (Figure 4 a). Simultaneously, however, the feasibility domains themselves218

become more similar between them in wetter years (Figure 4 b). The combination of these219
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last two findings suggests that the wetter the conditions, the more constrained the220

interactions across all triplets of species to the same narrow part of the parameter space, so221

all subcommunities need similar conditions to coexist. Conversely, these results also222

suggest that two mechanisms increase the opportunities for species to coexist when the223

conditions are drier. First, the feasibility domain for each subcommunity tends to be224

bigger, and second, the feasibility domains of different subcommunities are positioned at225

different locations of the parameter space, which overall increases the likelihood of the226

system to maintain diversity by covering a larger fraction of the parameter space.227

Discussion228

It is widely acknowledged that species interactions are fundamental to maintaining229

biodiversity, yet our understanding of the temporal dynamics of these interactions remains230

surprisingly limited and not connected to how stable communities are against231

environmental variation. Part of this limitation is because much of the recent debate has232

centered on whether these changes are deterministic or stochastic [CaraDonna et al., 2017,233

Catford et al., 2022, Chamberlain et al., 2014, Daniel et al., 2024, Hallett et al., 2019,234

Ushio et al., 2018]. However, this focus often overlooks a more fundamental question: To235

what extent are species interactions constrained, as opposed to being highly plastic and236

adaptable? Our findings strongly support the view that interactions are constrained by the237

composition of species within communities, while external drivers such as precipitation238

—commonly believed to play a major role [Hallett et al., 2019, Mat́ıas et al., 2018,239

Van Dyke et al., 2022, Wainwright et al., 2019]— have a comparatively minor effect on240

generating variation in interactions. Additionally, we found evidence that our communities241
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show a temporally auto-correlated structure. This finding is surprising in a community of242

annual plants, indicating that the system retains a “memory” of past interactions and243

abundances that influences short-term dynamics. While the underlying mechanisms are not244

yet fully understood, we hypothesize that this temporal autocorrelation could reflect245

gradual changes in species abundances or small-scale habitat modifications such as246

attracting natural enemies [Song et al., 2021] and self-limiting processes such as litter247

build-up [Letts et al., 2015].248

The observed constraints on species interactions have significant implications for249

understanding the maintenance of species diversity, particularly given the increasing250

environmental variability driven by human activities. Our finding that these constraints251

are strong and internally driven suggests that communities have a limited capacity to252

absorb environmental change before species extinctions occur [Saavedra et al., 2017, Song253

et al., 2020]. Specifically, stronger constraints mean a smaller portion of the feasibility254

domain is accessible, increasing the likelihood that environmental fluctuations will push the255

intrinsic growth rates of the system outside the bounds of species positive growth rates,256

which can negatively impact biodiversity because species can no longer thrive in the system257

[Allen-Perkins et al., 2023, Grilli et al., 2017]. Consequently, even seemingly minor258

environmental shifts can trigger substantial changes in community composition [Van Dyke259

et al., 2022]. Therefore, the maintenance of biodiversity under such changing conditions260

relies heavily on compositional shifts: different species assemblages occupying distinct261

regions of the parameter space (see Appendix S1: Figure S1). This perspective offers a262

crucial complement to existing explanations for the widely documented pattern of species263

turnover across broad temporal and spatial climatic gradients [Buckley and Jetz, 2008,264
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Korhonen et al., 2010]. While it is well-established that species adapt to local conditions265

—a process where the environment effectively filters the community members266

[HilleRisLambers et al., 2012, Kraft et al., 2015b]— our findings highlight that the inherent267

constraints on how species can interact within the available species pool are equally268

important in determining which species combinations are viable.269

A key conclusion from our study is that the strength and sign of species interactions within270

ecological communities does not follow a completely random structure. In other words,271

species interactions are demonstrably constrained by biological factors, meaning that272

communities explore only a limited portion of the theoretically available feasibility domain.273

This finding has important implications for theoretical ecology, particularly for a large and274

influential body of work that uses network approaches based on random matrices to study275

species coexistence in species-rich communities [Akjouj et al., 2024, Allesina and Tang,276

2012, Gibbs et al., 2022, May, 1972]. These models assume that species interactions are277

assigned randomly —that is, species interact with a given probability and with a strength278

drawn from a statistical distribution—. While we fully acknowledge the significant279

contributions of this random-matrix approach, our results suggest that its direct280

applicability to real-world communities may be limited by its inherent assumption of281

random interactions. A more realistic and potentially fruitful direction for future282

theoretical work could involve incorporating internal constraints on interactions in these283

network models. That is, combining a probabilistic approach [Strydom et al., 2021] with284

the creation of species “identities”, a set of constraints that define how often a species285

interacts with other species, the kind of interactions, how strong these interactions are, and286

how symmetric.287
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An intriguing finding of our study is that environmental variation in the form of288

precipitation variability does not have uniform effects on different facets of species289

interactions and feasibility. Specifically, the drier and wetter ends of the annual290

precipitation gradient have contrasting impacts. While drier years allow subcommunities to291

explore different subsections of the parameter space that are bigger in average, wetter years292

reduce this variation, making all subcommunities behave more alike and making their293

feasibility domains shrink in average. From our experience observing the study system294

during a decade, we deduce that these patterns emerge because in drier years competition295

is relaxed and may even shift to facilitation as total biomass remains low, while in wetter296

years, total biomass is way higher and there are enough plants and of a big enough size as297

to compete for resources like nutrients and light. The ecological meaning is that drier years298

increase the opportunities for coexistence, while the opposite is true in wetter years. These299

temporal processes affecting the feasibility of natural communities have never been300

reported before beyond our study system, and they imply that the directionality of the301

environmental change matters for constraining interactions and maintaining diversity.302

In conclusion, our study demonstrates that even in a highly dynamic system of short-lived303

annual plants, species interactions are strongly constrained, primarily by the identity of the304

interacting species. It is reasonable to hypothesize that longer-lived organisms, such as305

perennial plants or trees, might exhibit even stronger constraints due to their slower306

growing strategies, though this requires further validation. Our study has therefore307

implications for how the local species pool can cope with changing environmental308

conditions, and makes complementary explanations for changes in species composition309

across broad environmental gradients. Taken together, these results underscore the critical310
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need to incorporate the constrained nature of species interaction variability into both our311

understanding and our predictions of species coexistence and biodiversity maintenance.312
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Figure 1. Theoretical expectations for how the feasibility domains (FDs) of a community490

explore the parameter space over time. (a) Strong internal constraints scenario: FDs491

remain concentrated in a limited region, indicating strong internal constraints. (b) Multiple492

external constraints scenario: FDs shift between distinct regions, suggesting multiple stable493

states. (c) Lack of constraints scenario: FDs spread across the entire parameter space,494

implying minimal constraints. (d-f) Expected distributions of overlap values between pairs495

of consecutive FDs for each scenario: (d) High internal constraints lead to consistently high496

overlap, (e) alternative stable regions result in a bimodal distribution of overlap values, and497

(f) no constraints produce a uniform overlap distribution.498

Figure 2. Examples of observed feasibility domains (FDs) for selected subcommunities,499

each composed of three species. Each pink polygon represents the FD for a given year,500

illustrating the range of feasible conditions for that subcommunity. Some FDs extend501

beyond the triangular space, indicating scenarios where at least one species has a negative502

intrinsic growth rate due to facilitative effects. These regions have been cropped to display503

only positive intrinsic growth rates. Correspondence between species codes and scientific504

names can be found in Appendix S1: Table S1.505

Figure 3. Constraints in Feasibility domains (FDs). This figure explores mean overlap506

between pairs of FD, calculated for subcommunities (triplets of species). Panel (a): The507

line plots show the accumulated mean overlap for three scenarios: (1) Observed508

Interactions, Observed Order (purple): Using the empirically observed matrices in their509

original temporal order. (2) Randomized Interactions, Observed Order (blue): Using510

matrices with randomized entries but maintaining the original temporal order. (3)511

Observed Interactions, Randomized Order (green): Using the empirically observed matrices512
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but with their temporal order randomized. Lines represent the mean calculated across all513

subcommunities (triplets of species), shaded areas 95% confidence intervals for each mean.514

Panels (b)-(d): Distribution of Pairwise Overlap. Histograms showing the distribution of515

the degree of overlap between all possible pairs of matrices within each scenario. Panels516

display the distribution of pairwise FD overlap values for each scenario: (b) Observed, (c)517

Randomized Matrices, (d) Disordered.518

Figure 4. Precipitation reduces feasibility domain mean size but increases the temporal519

similarity of species interactions. This figure displays how annual precipitation exerts520

contrasting influences on two key ecological properties of subcommunities (species triplets).521

Panel (a) Feasibility Domain Size (Ω). The points denote the mean size (Ω) of feasibility522

domains, averaged across all subcommunities within a given year. Error bars represent 95%523

confidence intervals for these annual means. Panel (b) Interaction Matrix Similarity. The524

points denote the similarity between interaction matrices, quantified using the inverse of525

the euclidean distance between them, averaged across all subcommunities per year. Error526

bars represent 95% confidence intervals for these annual means. In both panels, red lines527

and shaded regions depict the predicted values and the 95% confidence intervals from the528

respective linear regressions, respectively. Also, Spearman’s correlation (ρ) is shown for529

each case. For illustrative purposes, we show for each panel examples of feasibility domains530

at the extremes of the precipitation gradient. In a), we highlight the differences in size531

between larger domains under drier years and smaller domains under wetter years. In b),532

we highlight differences in the position and shape of the feasibility domains of different533

subcommunities in drier years versus similar locations and shapes in wetter years.534
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2Estación Biológica de Doñana (EBD-CSIC), Sevilla, E-41092, Spain.553

3Department of Ecology and Evolutionary Biology, University of California,554

Los Angeles (UCLA)555

Contents556

A List of species and codes S2557

B Feasibility domains and overlap S2558

C Precipitation and precipitation effects S7559

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2025. ; https://doi.org/10.1101/2025.10.28.684754doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.28.684754
http://creativecommons.org/licenses/by-nc-nd/4.0/


A List of species and codes560

Species Order Family Abbreviation

Beta macrocarpa Caryophyllales Amaranthaceae BEMA
Centaurium tenuiflorum Gentianales Gentianaceae CETE

Hordeum marinum Poales Poaceae HOMA
Leontodon maroccanus Asterales Asteraceae LEMA

Parapholis incurva Poales Poaceae PAIN
Plantago coronopus Lamiales Plantaginaceae PLCO

Polypogon monspeliensis Poales Poaceae POMA

Table S1: List of species used to estimate interactions and abbreviations used to identify

them in code and plots.

B Feasibility domains and overlap561

B.1 Three species562
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Figure S1: Feasibility domains (FDs) observed for all subcommunities (triplets of species).

Each black line triangle contains the FDs observed during 9 years for a subcommunity. Each

pink triangle represents the FD of one year for that subcommunity. Some FDs extend outside

the triangle space (where the intrinsic growth rate for at least one species is negative) because

of facilitative effects, but these regions have been cut to only show positive intrinsic growth

rates. Correspondence between species codes and scientific names can be found in Appendix

S1: Table S1. S3
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Figure S2: Species effects. Differences from the mean intercept for accumulated mean overlap

caused by the presence of a species in a subcommunity (triplet of species). Estimated using

a multimembership mixed model where treatment (Observed, Randomized, Disordered) and

time (years) explain accumulated mean overlap, using a species-presence matrix as a random

effect instead. Point estimates and 95% confidence intervals are shown.
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Predictor Estimate Std. error t value

Disordered (Intercept) 0.642 0.052 12.377
Observed 0.067 0.008 8.221

Randomized -0.350 0.008 -42.712
Time (years) 0.006 0.001 3.781

Table S2: Multimembership model fixed effects. Summary table of the fixed effects estimated

in the multimembership mixed model where treatment (Observed, Randomized, Disordered)

and time (years) explain accumulated mean overlap, and a species-presence matrix is used

as a random effect instead.
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B.2 Four species563
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Figure S3: Constraints in Feasibility domains (FDs). This figure explores mean overlap

between pairs of FD, calculated for subcommunities (groups of four of species). Panel (a):

The line plots show the accumulated mean overlap for three scenarios: (1) Observed Inter-

actions, Observed Order (purple): Using the empirically observed matrices in their original

temporal order. (2) Randomized Interactions, Observed Order (blue): Using matrices with

randomized entries but maintaining the original temporal order. (3) Observed Interactions,

Randomized Order (green): Using the empirically observed matrices but with their temporal

order randomized. Lines represent the mean calculated across all subcommunities (groups of

four of species), shaded areas 95% confidence intervals for each mean. Panels (b)-(d): Dis-

tribution of Pairwise Overlap. Histograms showing the distribution of the degree of overlap

between all possible pairs of matrices within each scenario. Panels display the distribution

of pairwise FD overlap values for each scenario: (b) Observed, (c) Randomized Matrices, (d)

Disordered.
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C Precipitation and precipitation effects564
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Figure S4: Precipitation time series from the study site. Precipitation data obtained from

the nearest meteorological station to the study site (∼10 km), Estación Meteorológica de

Aznalcázar, Junta de Andalućıa. Data is expressed as total mm of precipitation for the

hydrological year (September - August). Vertical dashed bars mark the duration of the

study (2015 - 2023).
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Predictor Estimate Std. error p-value

Intercept 0.6500 0.0508 4.1500E-06
Precipitation -0.0004 0.0001 0.0102

Table S3: Summary table of the linear regression shown in Figure 4 a).

Predictor Estimate Std. error p-value

Intercept 0.1085 7.09500E-03 1.2300E-06
Precipitation 6.6580E-05 1.6810E-05 0.0055

Table S4: Summary table of the linear regression shown in Figure 4 b).
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Understanding how vital rates and species interactions vary over time is crucial for predicting community responses to environmental change. Considerable progress has been made in understanding the drivers of variation in vital rates. However, the question of whether interactions are highly plastic and context-dependent, or strongly constrained by internal (e.g., species traits and composition) and/or external factors (e.g., environmental conditions) remains unclear. We applied a theoretical approach based on the feasibility domain ---the range of conditions allowing coexistence--- to a nine-year dataset of time-changing interactions between annual plants under large variability in annual precipitation. Using subcommunities of three species, we found that species interactions are strongly constrained, forming a ``core-periphery'' structure of consistently feasible combinations across years. This main finding means that species sample repeatedly a restricted range of opportunities for coexistence. Similar findings were obtained for subcommunities of four species. Crucially, the constraints to variation in biotic interactions are determined by species identity (internal constraints) rather than precipitation or temporal autocorrelation (external environmental factors). Furthermore, we found a contrasting effect of precipitation on the feasibility of subcommunities. While wetter years increase similarity between subcommunities and reduce the overall feasible range, drier years increase dissimilarity between subcommunities and increase the probability of coexistence when the conditions seem harsher. These findings suggest that constraints to biotic interactions tend to be alike across species in wetter years, but more context dependency occurs across species in drier years. Our findings challenge the assumption of highly plastic species interactions even in a highly dynamic system of annual plants. Our results also highlight the critical importance of internal constraints generated by species identity in mediating community persistence and predicting community responses to environmental change.
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\section*{Introduction}

To predict how ecological communities will respond to a changing world, we need to understand two intertwined processes: the vital rates of individual species  \citep{bernhardt_life_2020, boyce_demography_2006}, and the complex web of interactions between them \citep{brooker_plantplant_2006, tylianakis_global_2008}. Organisms of the same species share characteristic traits like body size, feeding strategy, or metabolic rates that produce vital rates (survival, growth, and reproduction) that differ between species \citep{adler_functional_2014}. Analogously, the characteristic traits of a species determine how often it interacts with other species, the kind of interaction, how strong these interactions are, and how symmetric \citep{perez2019, strydom_roadmap_2021}. Together, these two components determine population dynamics while also potentially providing species with flexibility to cope with novel fast-changing environments. While considerable progress has been made in understanding the responses of individual species vital rates \citep{compagnoni_herbaceous_2021, slein_effects_2023}, a critical piece of the puzzle remains missing. Whether and how these interactions themselves ---the architects of ecosystem stability--- shift and reorganize in response to environmental variability remains largely unknown. Obtaining this information is critical to understand how much environmental variation a community can withstand before losing species \citep{grilli_feasibility_2017}, since species interactions determine what combinations of vital rates allow for the persistence of all species in the community \citep{saavedra_structural_2017}.

Species interactions, as a measure of the effect of one species on the growth rate of another, are not fixed. Their strength (weak vs. strong) and sign (positive vs. negative) vary markedly across space and time \citep{caradonna_interaction_2017, ushio_fluctuating_2018, zvereva_latitudinal_2021}. Although some species traits or abiotic conditions seem to generate some patterns \citep{maestre_positive_2004, daniel_fastslow_2024}, the prevailing view holds that most changes in species interactions are highly context-dependent and hence difficult to predict \citep{catford_addressing_2022, chamberlain_how_2014, song_towards_2020}. This inherent variability and unpredictability raise a fundamental question: Are changes in species interactions essentially random, or are they constrained by underlying factors? These constraints could arise from either internal community characteristics such as species identity with their particular trait profile and evolutionary origin, or from external environmental drivers such as rainfall variability. Understanding the nature and strength of these constraints is essential for predicting how ecological communities will respond to ongoing environmental change and to develop effective conservation strategies \citep{tylianakis_global_2008}. 

To address the dichotomy of the internal versus external forces shaping species interactions, we adopt a structuralist approach \citep{svirezhev1978stability, saavedra_structural_2017} that allows scaling up from prior pairwise approaches \citep{hallett2019, kraft_plant_2015} to consider a community-level perspective. Within this approach, a key concept is the feasibility domain, which allows quantifying the various constraints on species interactions. As an analogy, think of the feasibility domain as a ``safe operating space'' for the community: it represents the range of conditions ---such as combinations of growth rates--- where all species can coexist \citep{saavedra_structural_2017, godoy2018}. A larger and more symmetric feasibility domain implies a higher probability of long-term community persistence \citep{song_guideline_2018, allen2023}. While this framework has typically been used to analyze communities with fixed interactions \citep{saavedra_structural_2017}, we extend it to a dynamic system with changing interactions: how the feasibility domain ---a direct reflection of the current interaction network--- itself moves and morphs in response to environmental change \citep{song_guideline_2018, song_towards_2020}.

The dynamic feasibility domain approach allows us to describe how the feasibility domains of different years explore the range of possible parameters --- growth rates in this case --- and if their movements between consecutive years are gradual or abrupt. Using this technique, we can test three distinct hypotheses about the nature of constraints on species interactions (Figure \ref{fig:concept}). First, strong internal constraints may dictate interactions, driven primarily by fixed species traits (e.g., phenology, functional traits) \citep{daniel_fastslow_2024, olesen_missing_2011} or taxonomic identity \citep{godoy2014}.  If this is the case, feasibility domains from different years would consistently overlap, forming a \textit{core-periphery structure}, where a central region of the interaction space is consistently feasible (Figure \ref{fig:concept} a). Second, multiple external constraints could drive shifts between distinct states of species interactions. For example, alternating periods of drought and flooding might lead to different community configurations or changes in relative abundances \citep{fujita_alternative_2023} and, consequently, feasibility domains using distinct areas of the parameter space (Figure \ref{fig:concept} b). Third, a lack of strong constraints might result in feasibility domains that vary randomly across the parameter space, reflecting a high degree of environmental forcing or stochasticity (e.g., strong effect of precipitation or dispersion) in community assembly (Figure \ref{fig:concept} c). As each scenario provides different distributions of overlaps between feasibility domains of consecutive years (Figure \ref{fig:concept} d-f), our theoretical framework provides a powerful method to distinguish between internal and external constraints on species interactions.
 
With our approach, we hypothesize that if internal constraints are dominant, randomizing species identities within the interaction matrix should disrupt the core-periphery pattern and the observed temporal conservation of the feasibility domain. In contrast, external constraints creating a similar \textit{core-periphery structure} act through autocorrelation in environmental conditions or by species-mediated modifications of the microenvironment. For instance, species can gradually build up thick litter layers (e.g., grasses with litter hard to decompose) or increase the abundance of natural enemies that persist in the soil (e.g., forbs with large and soft leaves that are attacked by fungi) \citep{bever_soil_2003, bever_maintenance_2015}. If these externally driven, time-dependent processes are the main constraint, then the order in which species interactions occur over time becomes crucial. Specifically, interaction matrices from consecutive years should be more similar than those from more distant years. Therefore, randomizing the temporal order of these matrices should eliminate this time-dependent similarity (temporal autocorrelation) and allow an assessment of origin of the constraints.

We test these hypotheses using a unique, nine-year dataset of temporal variation in species interactions in a Mediterranean grassland community (Doñana National Park, Spain). This system is characterized by annual plants from diverse taxonomic groups, experiencing highly variable annual precipitation (Appendix S1: Figure \ref{fig:precip_ts}), making it an ideal system for investigating to what extent internal constraints versus environmental variability shape species interactions. By integrating detailed field observations with our structuralist approach, we provide the first empirical assessment of the constraints governing species interaction variation in a multi-species natural community.

\clearpage

\section*{Methods}

\textbf{Study system}

We collected data from our field site in Caracoles Ranch, a natural grassland with no cattle present, located within Doñana National Park (SW Spain 37.07$^\circ$ N, 6.31$^\circ$ W). The area has a Mediterranean climate with a mean temperature of {17.5}$^\circ$ C  and a mean precipitation of 460 mm for the period 2000-2023. A small slope generates a gradient of soil salinity and humidity. Vegetation on this site is dominated by annual plant species, with perennial species barely present.

In September 2014, we established nine plots of 8.5 m x 8.5 m along this environmental gradient, divided into three blocks of three. Plots were separated by an average distance of 30 m (minimum 20 m) and blocks by an average distance of 300 m. Each plot was divided into 36 subplots of 1 x 1 m with corridors of 0.5 m in between to allow access for measurements. For nine growing seasons (2015-2023), we measured abundances of every species in every subplot. We used nine interaction matrices (one per year), previously estimated from these field observations following a methodology already used and tested \citep{garcia-callejas_spatial_2021}, for the seven most common species that were present every year in every plot (Appendix S1: Table \ref{names-table}). These matrices characterize the interaction structure of this community every year by including the per capita effects of each species on itself and on all other species.

\textbf{Feasibility domains and overlap}

Our approach was to use mainly subcommunities of triplets of species as our unit of analysis, giving a total of 35 combinations of species, although we also extended our evaluation's main findings to subcommunities of four species (Appendix S1: Figure \ref{fig:fourspp_mean}). We chose these levels of richness because, while offering some of the complexity of multispecies systems beyond simple pairs, they produce feasibility domains big enough to create patterns of overlap and, in addition, the three species case can be graphically represented in two dimensions for an easier interpretation. Note that this approach works for combinations of three and four species from the total of seven species with available interactions data. But, as the size of the feasibility domain depends on the number of species \citep{dougoud_feasibility_2018}, we cannot approach each subcommunity to the total number of species because feasibility domains tend to become smaller and the overlap patterns eventually disappear. For those particular cases, the alternative would be to measure the distance between centroids or the nearest sides of consecutive feasibility domains. We calculated the feasibility domain for each combination of subcommunity and year from the corresponding matrix of interactions. Assuming that the population dynamics in a community can be approximated by a Lotka-Volterra system, we define as feasible equilibria of that system those where all species have positive abundances. The region of the parameter space of intrinsic growth rates that leads to feasible equilibria given an interaction matrix is known as the feasibility domain \citep{saavedra_structural_2017, song_guideline_2018}. We calculated the size of the feasibility domain as the normalized solid angle $\Omega(A)$ that is equal to the probability of sampling uniformly a vector of intrinsic growth rates on the unit sphere inside the feasibility domain \citep{song_guideline_2018}. The normalized solid angle $\Omega(A)$ can be defined as
\begin{equation}
    \Omega(A) = \frac{\texttt{vol}(D_F(A) \cap \mathbb{B}^S)}{\texttt{vol}(\mathbb{B}^S)}
\end{equation}
where $\mathbb{B}^S$ is the closed unit ball in dimension S. We calculated the overlap between pairs of feasibility domains as the shared normalized solid angle $\Omega(A \cap B)$ \citep{song_guideline_2018}, that is the range of conditions under which the community is feasible under both matrices. We calculated the overlap between pairs in three different scenarios:

\begin{enumerate}
    \item Overlaps between feasibility domains of observed matrices in the observed order.
    \item Overlaps between feasibility domains of matrices with their elements randomized in the observed order.
    \item Overlaps between feasibility domains of observed matrices in a randomized order.
\end{enumerate}

In our analytical design, to numerically estimate the differences in mean overlap between different scenarios with triplets, we applied a multi-membership mixed model for repeated measures to the overlap data. In that model, we incorporated the differences in mean overlap created by species identity nested in our subcommunities, since different subcommunities are not fully independent from each other, but rather they share species. We did it by implementing a presence/absence matrix of species in each observation (mean accumulated overlap for a triplet and 2-9 years) as a random factor.

\textbf{Environmental effects}

To examine the effect of environmental variability, we also compiled precipitation data from the nearest meteorological station for the years 2015-2023 in the form of mm of precipitation per hydrological year (September - August) (Appendix S1: Figure \ref{fig:precip_ts}, Estación Meteorológica de Aznalcázar, Junta de Andalucía). For this analysis, we calculated similarity between matrices of all subcommunities in every year as the inverse of the Euclidean distance calculated as

\begin{equation}
    d(A, B) = \sqrt{\sum_{i = 1}^{n}\sum_{j = 1}^{n}(a_{ij} - b_{ij})^2}
\end{equation}

where the distance between two matrices $(A, B)$ is estimated as the square root of the sum of the squares of the differences between elements $a_{ij}$ and $b_{ij}$ for every position $ij$. We also calculated mean size ($\Omega$) of the feasibility domains in every year, and then we compared these variables against precipitation of the corresponding hydrological year (September - August). For each variable, we calculated the slope of the linear regression against precipitation with a 95\% confidence interval and Spearman's correlation.

All analyses and figures were implemented using R v4.5.0 \citep{r-base} and packages \textit{tidyverse} \citep{tidyverse}, \textit{feasoverlap} \citep{song_guideline_2018}, \textit{ggtern} \citep{ggtern}, \textit{lme4} \citep{lme4}, and \textit{proxy} \citep{proxy}.

\section*{Results}

We found that species interactions are highly structured across the nine years. Rather than exhibiting random variation, we found strong evidence for internal constraints shaping the dynamics of these interactions. The feasibility domains, representing all feasible combinations of intrinsic growth rates for the case of three-species subcommunities, were not randomly distributed across the parameter space. Instead, we observed a distinct core-periphery structure (Figure \ref{fig:fd_examples}, Appendix S1: Figure \ref{fig:fd_all}): certain regions of the parameter space are consistently feasible across years, forming a ``core'', while other regions are only transiently feasible, constituting the ``periphery''. This finding is \textit{a priori} surprising for a strong dynamical system such as ours, where annual plant species complete their entire life cycle within a single year, and the community studied experiences strong interannual environmental variation. Thus, this persistence of the core-periphery structure strongly suggests underlying constraints that operate despite these dynamic forces.

To differentiate between internal and external constraints, we compared the overlap of feasibility domains between consecutive years in three scenarios: the \textit{observed} time series, \textit{randomized} time series (with interaction coefficients shuffled within matrices), and \textit{disordered} time series (with the temporal order of matrices randomized) (Figure \ref{fig:triplets}). This comparison rigorously accounted for repeated measurements through time and the non-independence of subcommunities (see Methods). Our results demonstrate that the degree of overlap in the observed time series significantly exceeded that of both the randomized and disordered scenarios (Figure \ref{fig:triplets} a). Notably, the largest difference was observed between the observed and randomized-interactions scenarios, with only a slight difference between the observed and disordered-time-series scenarios. These results strongly suggest that, in this system, internal constraints are the primary drivers of the core-periphery structure, with a smaller contribution from temporal autocorrelation in the structure of species interactions.

Given the dominance of internal constraints, a remaining question is what role the environmental variability plays in our study system. We found that annual precipitation, a known driver of community dynamics in this system \citep{godoy2024}, exerts a complex influence on the feasibility domains. Years with higher precipitation are associated with a significant reduction in the average size ($\Omega$) of the feasibility domains across subcommunities (Figure \ref{fig:precipitation_effects} a). Simultaneously, however, the feasibility domains themselves become more similar between them in wetter years (Figure \ref{fig:precipitation_effects} b). The combination of these last two findings suggests that the wetter the conditions, the more constrained the interactions across all triplets of species to the same narrow part of the parameter space, so all subcommunities need similar conditions to coexist. Conversely, these results also suggest that two mechanisms increase the opportunities for species to coexist when the conditions are drier. First, the feasibility domain for each subcommunity tends to be bigger, and second, the feasibility domains of different subcommunities are positioned at different locations of the parameter space, which overall increases the likelihood of the system to maintain diversity by covering a larger fraction of the parameter space. 

\section*{Discussion}

It is widely acknowledged that species interactions are fundamental to maintaining biodiversity, yet our understanding of the temporal dynamics of these interactions remains surprisingly limited and not connected to how stable communities are against environmental variation. Part of this limitation is because much of the recent debate has centered on whether these changes are deterministic or stochastic \citep{caradonna_interaction_2017, catford_addressing_2022, chamberlain_how_2014, daniel_fastslow_2024, hallett2019, ushio_fluctuating_2018}. However, this focus often overlooks a more fundamental question: To what extent are species interactions constrained, as opposed to being highly plastic and adaptable? Our findings strongly support the view that interactions are constrained by the composition of species within communities, while external drivers such as precipitation ---commonly believed to play a major role \citep{hallett2019, matias2018, wainwright_distinct_2019, van2022}--- have a comparatively minor effect on generating variation in interactions. Additionally, we found evidence that our communities show a temporally auto-correlated structure. This finding is surprising in a community of annual plants, indicating that the system retains a ``memory'' of past interactions and abundances that influences short-term dynamics. While the underlying mechanisms are not yet fully understood, we hypothesize that this temporal autocorrelation could reflect gradual changes in species abundances or small-scale habitat modifications such as attracting natural enemies \citep{song_when_2021} and self-limiting processes such as litter build-up \citep{letts_litter_2015}.

The observed constraints on species interactions have significant implications for understanding the maintenance of species diversity, particularly given the increasing environmental variability driven by human activities. Our finding that these constraints are strong and internally driven suggests that communities have a limited capacity to absorb environmental change before species extinctions occur \citep{saavedra_structural_2017, song_towards_2020}.  Specifically, stronger constraints mean a smaller portion of the feasibility domain is accessible, increasing the likelihood that environmental fluctuations will push the intrinsic growth rates of the system outside the bounds of species positive growth rates, which can negatively impact biodiversity because species can no longer thrive in the system \citep{allen2023, grilli_feasibility_2017}. Consequently, even seemingly minor environmental shifts can trigger substantial changes in community composition \citep{van2022}. Therefore, the maintenance of biodiversity under such changing conditions relies heavily on compositional shifts: different species assemblages occupying distinct regions of the parameter space (see Appendix S1: Figure \ref{fig:fd_all}). This perspective offers a crucial complement to existing explanations for the widely documented pattern of species turnover across broad temporal and spatial climatic gradients \citep{buckley_linking_2008, korhonen_quantitative_2010}. While it is well-established that species adapt to local conditions ---a process where the environment effectively filters the community members \citep{hillerislambers2012, kraft2015}--- our findings highlight that the inherent constraints on how species can interact within the available species pool are equally important in determining which species combinations are viable.

A key conclusion from our study is that the strength and sign of species interactions within ecological communities does not follow a completely random structure. In other words, species interactions are demonstrably constrained by biological factors, meaning that communities explore only a limited portion of the theoretically available feasibility domain. This finding has important implications for theoretical ecology, particularly for a large and influential body of work that uses network approaches based on random matrices to study species coexistence in species-rich communities \citep{akjouj_complex_2024, allesina_stability_2012, gibbs2022, may_will_1972}. These models assume that species interactions are assigned randomly ---that is, species interact with a given probability and with a strength drawn from a statistical distribution---. While we fully acknowledge the significant contributions of this random-matrix approach, our results suggest that its direct applicability to real-world communities may be limited by its inherent assumption of random interactions. A more realistic and potentially fruitful direction for future theoretical work could involve incorporating internal constraints on interactions in these network models. That is, combining a probabilistic approach \citep{strydom_roadmap_2021} with the creation of species ``identities'', a set of constraints that define how often a species interacts with other species, the kind of interactions, how strong these interactions are, and how symmetric.

An intriguing finding of our study is that environmental variation in the form of precipitation variability does not have uniform effects on different facets of species interactions and feasibility. Specifically, the drier and wetter ends of the annual precipitation gradient have contrasting impacts. While drier years allow subcommunities to explore different subsections of the parameter space that are bigger in average, wetter years reduce this variation, making all subcommunities behave more alike and making their feasibility domains shrink in average. From our experience observing the study system during a decade, we deduce that these patterns emerge because in drier years competition is relaxed and may even shift to facilitation as total biomass remains low, while in wetter years, total biomass is way higher and there are enough plants and of a big enough size as to compete for resources like nutrients and light. The ecological meaning is that drier years increase the opportunities for coexistence, while the opposite is true in wetter years. These temporal processes affecting the feasibility of natural communities have never been reported before beyond our study system, and they imply that the directionality of the environmental change matters for constraining interactions and maintaining diversity. 

In conclusion, our study demonstrates that even in a highly dynamic system of short-lived annual plants, species interactions are strongly constrained, primarily by the identity of the interacting species. It is reasonable to hypothesize that longer-lived organisms, such as perennial plants or trees, might exhibit even stronger constraints due to their slower growing strategies, though this requires further validation. Our study has therefore implications for how the local species pool can cope with changing environmental conditions, and makes complementary explanations for changes in species composition across broad environmental gradients. Taken together, these results underscore the critical need to incorporate the constrained nature of species interaction variability into both our understanding and our predictions of species coexistence and biodiversity maintenance.
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Figure 1. Theoretical expectations for how the feasibility domains (FDs) of a community explore the parameter space over time. (a) Strong internal constraints scenario: FDs remain concentrated in a limited region, indicating strong internal constraints. (b) Multiple external constraints scenario: FDs shift between distinct regions, suggesting multiple stable states. (c) Lack of constraints scenario: FDs spread across the entire parameter space, implying minimal constraints. (d-f) Expected distributions of overlap values between pairs of consecutive FDs for each scenario: (d) High internal constraints lead to consistently high overlap, (e) alternative stable regions result in a bimodal distribution of overlap values, and (f) no constraints produce a uniform overlap distribution.

Figure 2. Examples of observed feasibility domains (FDs) for selected subcommunities, each composed of three species. Each pink polygon represents the FD for a given year, illustrating the range of feasible conditions for that subcommunity. Some FDs extend beyond the triangular space, indicating scenarios where at least one species has a negative intrinsic growth rate due to facilitative effects. These regions have been cropped to display only positive intrinsic growth rates. Correspondence between species codes and scientific names can be found in Appendix S1: Table \ref{names-table}.

Figure 3. Constraints in Feasibility domains (FDs). This figure explores mean overlap between pairs of FD, calculated for subcommunities (triplets of species). Panel (a): The line plots show the accumulated mean overlap for three scenarios: (1) Observed Interactions, Observed Order (purple): Using the empirically observed matrices in their original temporal order. (2) Randomized Interactions, Observed Order (blue): Using matrices with randomized entries but maintaining the original temporal order. (3) Observed Interactions, Randomized Order (green):  Using the empirically observed matrices but with their temporal order randomized. Lines represent the mean calculated across all subcommunities (triplets of species), shaded areas 95\% confidence intervals for each mean. Panels (b)-(d): Distribution of Pairwise Overlap. Histograms showing the distribution of the degree of overlap between all possible pairs of matrices within each scenario. Panels display the distribution of pairwise FD overlap values for each scenario: (b) Observed, (c) Randomized Matrices, (d) Disordered.

Figure 4. Precipitation reduces feasibility domain mean size but increases the temporal similarity of species interactions. This figure displays how annual precipitation exerts contrasting influences on two key ecological properties of subcommunities (species triplets). Panel (a) Feasibility Domain Size ($\Omega$). The points denote the mean size ($\Omega$) of feasibility domains, averaged across all subcommunities within a given year. Error bars represent 95\% confidence intervals for these annual means. Panel (b) Interaction Matrix Similarity. The points denote the similarity between interaction matrices, quantified using the inverse of the euclidean distance between them, averaged across all subcommunities per year. Error bars represent 95\% confidence intervals for these annual means. In both panels, red lines and shaded regions depict the predicted values and the 95\% confidence intervals from the respective linear regressions, respectively. Also, Spearman's correlation ($\rho$) is shown for each case. For illustrative purposes, we show for each panel examples of feasibility domains at the extremes of the precipitation gradient. In a), we highlight the differences in size between larger domains under drier years and smaller domains under wetter years. In b), we highlight differences in the position and shape of the feasibility domains of different subcommunities in drier years versus similar locations and shapes in wetter years.
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\section{List of species and codes}

\begin{table}[!ht]
\begin{center}
\begin{tabular}{c c c c}
    \toprule
    \textbf{Species} & \textbf{Order} & \textbf{Family} & \textbf{Abbreviation} \\
    \midrule
    \textit{Beta macrocarpa} & Caryophyllales & Amaranthaceae & BEMA \\
    \textit{Centaurium tenuiflorum} & Gentianales & Gentianaceae & CETE \\
    \textit{Hordeum marinum} & Poales & Poaceae & HOMA \\
    \textit{Leontodon maroccanus} & Asterales & Asteraceae & LEMA \\
    \textit{Parapholis incurva} & Poales & Poaceae & PAIN \\
    \textit{Plantago coronopus} & Lamiales & Plantaginaceae & PLCO \\
    \textit{Polypogon monspeliensis} & Poales & Poaceae & POMA \\
\end{tabular}
    \bigskip
    \caption{List of species used to estimate interactions and abbreviations used to identify them in code and plots.}
    \label{names-table}
\end{center}
\end{table}

\section{Feasibility domains and overlap}

\subsection{Three species}

\begin{figure}[!ht]
\begin{center}
    \includegraphics[width=1\linewidth]
    {Figure_appendix/fd_all.pdf}
    \caption{Feasibility domains (FDs) observed for all subcommunities (triplets of species). Each black line triangle contains the FDs observed during 9 years for a subcommunity. Each pink triangle represents the FD of one year for that subcommunity. Some FDs extend outside the triangle space (where the intrinsic growth rate for at least one species is negative) because of facilitative effects, but these regions have been cut to only show positive intrinsic growth rates. Correspondence between species codes and scientific names can be found in Appendix S1: Table \ref{names-table}.}    
    \label{fig:fd_all}
\end{center}
\end{figure}
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\begin{figure}[!ht]
    \includegraphics[width=.9\linewidth]{Figure_appendix/multi_species_effects.pdf}
    \caption{Species effects. Differences from the mean intercept for accumulated mean overlap caused by the presence of a species in a subcommunity (triplet of species). Estimated using a multimembership mixed model where treatment (Observed, Randomized, Disordered) and time (years) explain accumulated mean overlap, using a species-presence matrix as a random effect instead. Point estimates and 95\% confidence intervals are shown.}
    \label{fig:multi-sp}
\end{figure}

\begin{table}[!ht]
\begin{center}
\begin{tabular}{c c c c}
\toprule
\textbf{Predictor} & \textbf{Estimate} & \textbf{Std. error} & \textbf{t value} \\
\midrule
Disordered (Intercept) & 0.642 & 0.052 & 12.377 \\
Observed & 0.067 & 0.008 & 8.221 \\
Randomized & -0.350 & 0.008 & -42.712 \\
Time (years) & 0.006 & 0.001 & 3.781 \\
\end{tabular}
\bigskip
\caption{\label{multimember-table} Multimembership model fixed effects. Summary table of the fixed effects estimated in the multimembership mixed model where treatment (Observed, Randomized, Disordered) and time (years) explain accumulated mean overlap, and a species-presence matrix is used as a random effect instead.}
\end{center}
\end{table}
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\subsection{Four species}

\begin{figure}[!ht]
\begin{center}
    \includegraphics[width=0.8\linewidth]
    {Figure_appendix/mean_4spp.pdf}
    \caption{Constraints in Feasibility domains (FDs). This figure explores mean overlap between pairs of FD, calculated for subcommunities (groups of four of species). Panel (a): The line plots show the accumulated mean overlap for three scenarios: (1) Observed Interactions, Observed Order (purple): Using the empirically observed matrices in their original temporal order. (2) Randomized Interactions, Observed Order (blue): Using matrices with randomized entries but maintaining the original temporal order. (3) Observed Interactions, Randomized Order (green):  Using the empirically observed matrices but with their temporal order randomized. Lines represent the mean calculated across all subcommunities (groups of four of species), shaded areas 95\% confidence intervals for each mean. Panels (b)-(d): Distribution of Pairwise Overlap. Histograms showing the distribution of the degree of overlap between all possible pairs of matrices within each scenario. Panels display the distribution of pairwise FD overlap values for each scenario: (b) Observed, (c) Randomized Matrices, (d) Disordered.
    \label{fig:fourspp_mean}}
\end{center}
\end{figure}
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\section{Precipitation and precipitation effects}

\begin{figure}[!ht]
    \includegraphics[width=.9\linewidth]{Figure_appendix/precipitation.pdf}
    \caption{Precipitation time series from the study site. Precipitation data obtained from the nearest meteorological station to the study site ($\sim$10 km), Estación Meteorológica de Aznalcázar, Junta de Andalucía. Data is expressed as total mm of precipitation for the hydrological year (September - August). Vertical dashed bars mark the duration of the study (2015 - 2023).}
    \label{fig:precip_ts}
\end{figure}

\clearpage

\begin{table}[!ht]
\begin{center}
\begin{tabular}{c c c c}
\toprule
\textbf{Predictor} & \textbf{Estimate} & \textbf{Std. error} & \textbf{p-value} \\
\midrule
Intercept & 0.6500 & 0.0508 & 4.1500E-06 \\
Precipitation & -0.0004 & 0.0001 & 0.0102\\
\end{tabular}
\bigskip
\caption{\label{omega-table} Summary table of the linear regression shown in Figure \ref{fig:precipitation_effects} a).}
\end{center}
\end{table}

\begin{table}[!ht]
\begin{center}
\begin{tabular}{c c c c}
\toprule
\textbf{Predictor} & \textbf{Estimate} & \textbf{Std. error} & \textbf{p-value} \\
\midrule
Intercept & 0.1085 & 7.09500E-03 & 1.2300E-06 \\
Precipitation & 6.6580E-05 & 1.6810E-05 & 0.0055 \\
\end{tabular}
\bigskip
\caption{\label{sim-table} Summary table of the linear regression shown in Figure \ref{fig:precipitation_effects} b).}
\end{center}
\end{table}
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            The Janzen–Connell (J‐C) hypothesis suggests that specialised natural enemies cause distance‐ or density‐dependent mortality among host plants and is regarded as an important mechanism for species coexistence. However, there remains debate about whether this phenomenon is widespread and how variation is structured across taxa and life stages. We performed the largest meta‐analysis of experimental studies conducted under natural settings to date. We found little evidence of distance‐dependent or density‐dependent mortality when grouping all types of manipulations. Our analysis also reveals very large variation in response among species, with 38.5\% of species even showing positive responses to manipulations. However, we found a strong signal of distance‐dependent mortality among seedlings but not seed experiments, which we attribute to (a) seedlings sharing susceptible tissues with adults (leaves, wood, roots), (b) seedling enemies having worse dispersal than seed enemies and (c) seedlings having fewer physical and chemical defences than seeds. Both density‐ and distance‐dependent mortality showed large variation within genera and families, suggesting that J‐C effects are not strongly phylogenetically conserved. There were no clear trends with latitude, rainfall or study duration. We conclude that J‐C effects may not be as pervasive as widely thought. Understanding the variation in J‐C effects provides opportunities for new discoveries that will refine our understanding of J‐C effects and its role in species coexistence.},
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                  Climate change is predicted to have profound consequences for multispecies coexistence, and thus, patterns of biological diversity. These consequences will be mediated by direct and indirect impacts of environmental change on species’ vital rates and interactions. While the impacts of environmental change on individual species has received much attention to date, the consequences for coexistence mediated by changes in the strength and direction of multispecies interactions are not as well understood.
                
                
                  To investigate how coexistence dynamics may be sensitive to environmental change, we conducted a field experiment in a diverse semi‐arid annual plant system. We imposed a water manipulation treatment in two sites that vary in aridity and associated rainfall. Focusing on four common annual plant species in these sites, we quantified the fecundity (seed production) of individuals in response to a gradient of intra‐ and interspecific competitor densities and aridity. We then used these fecundities to parameterize an annual plant population model and examine the influence of aridity and species identity on resultant coexistence dynamics (as a function of stabilizing niche differences and fitness inequalities).
                
                
                  While the responses of some vital rates and competitive impacts to watering varied somewhat predictably across sites, coexistence metrics encapsulating changes in these vital rates and interaction strengths did not. Fitness inequalities among our focal species were driven largely by differences in sensitivity to competition, which were almost always much greater than the magnitude of stabilizing niche differences. These findings were surprising given observational evidence suggesting that these species do coexist at local scales in these natural communities.
                
                
                  
                    Synthesis
                    . Our study is one of the first to explicitly consider the influence of environmental variation on the individual components of coexistence outcomes. We show that environmental change has the ability to influence coexistence not only through direct pathways (i.e., vital rates), but also indirect pathways (i.e., species interactions). Despite the consistency of many of the responses of these individual components to environmental variation, their combined influence on predictions of both current and future coexistence remains unclear.},
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	abstract = {In several real-life data-mining applications, data reside in very high (1000 or more) dimensional space, where both clustering techniques developed for low-dimensional spaces (k-means, BIRCH, CLARANS, CURE, DBScan, etc.) as well as visualization methods such as parallel coordinates or projective visualizations, are rendered ineffective. This paper proposes a relationship-based approach that alleviates both problems, side-stepping the “curse of-dimensionality” issue by working in a suitable similarity space instead of the original high-dimensional attribute space. This intermediary similarity space can be suitably tailored to satisfy business criteria such as requiring customer clusters to represent comparable amounts of revenue. We apply efficient and scalable graph-partitioning-based clustering techniques in this space. The output from the clustering algorithm is used to re-order the data points so that the resulting permuted similarity matrix can be readily visualized in two dimensions, with clusters showing up as bands. While two-dimensional visualization of a similarity matrix is by itself not novel, its combination with the order-sensitive partitioning of a graph that captures the relevant similarity measure between objects provides three powerful properties: (i) the high-dimensionality of the data does not affect further processing once the similarity space is formed; (ii) it leads to clusters of (approximately) equal importance, and (iii) related clusters show up adjacent to one another, further facilitating the visualization of results. The visualization is very helpful for assessing and improving clustering. For example, actionable recommendations for splitting or merging of clusters can be easily derived, and it also guides the user toward the right number of clusters. Results are presented on a real retail industry dataset of several thousand customers and products, as well as on clustering of web-document collections and of web-log sessions.},
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	abstract = {Summary
            Natural systems are being subjected to unprecedented rates of change and unique pressures from a combination of anthropogenic environmental change drivers. Plant–plant interactions are an important part of the mechanisms governing the response of plant species and communities to these drivers. For example, competition plays a central role in mediating the impacts of atmospheric nitrogen deposition, increased atmospheric carbon dioxide concentrations, climate change and invasive nonnative species. Other plant–plant interaction processes are also being recognized as important factors in determining the impacts of environmental change, including facilitation and evolutionary processes associated with plant–plant interactions. However, plant–plant interactions are not the only factors determining the response of species and communities to environmental change drivers – their activity must be placed within the context of the wide range of factors that regulate species, communities and ecosystems. A major research challenge is to understand when plant–plant interactions play a key role in regulating the impact of environmental change drivers, and the type of role that plant–plant interactions play. Although this is a considerable challenge, some areas of current research may provide the starting point to achieving these goals, and should be pursued through large‐scale, integrated, multisite experiments.
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            Plants have evolved diverse life history strategies to succeed in Earth’s varied environments. Some species grow quickly, produce copious seeds, and die within a few weeks. Other species grow slowly and rarely produce seeds but live thousands of years. We show that simple morphological measurements can predict where a species falls within the global range of life history strategies: species with large seeds, long-lived leaves, or dense wood have population growth rates influenced primarily by survival, whereas individual growth and fecundity have a stronger influence on the dynamics of species with small seeds, short-lived leaves, or soft wood. This finding increases the ability of scientists to represent complex population processes with a few easily measured character traits.
          , 
            Ecologists seek general explanations for the dramatic variation in species abundances in space and time. An increasingly popular solution is to predict species distributions, dynamics, and responses to environmental change based on easily measured anatomical and morphological traits. Trait-based approaches assume that simple functional traits influence fitness and life history evolution, but rigorous tests of this assumption are lacking, because they require quantitative information about the full lifecycles of many species representing different life histories. Here, we link a global traits database with empirical matrix population models for 222 species and report strong relationships between functional traits and plant life histories. Species with large seeds, long-lived leaves, or dense wood have slow life histories, with mean fitness (i.e., population growth rates) more strongly influenced by survival than by growth or fecundity, compared with fast life history species with small seeds, short-lived leaves, or soft wood. In contrast to measures of demographic contributions to fitness based on whole lifecycles, analyses focused on raw demographic rates may underestimate the strength of association between traits and mean fitness. Our results help establish the physiological basis for plant life history evolution and show the potential for trait-based approaches in population dynamics.},
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