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Ecological systems are the product of various assembly and 
disassembly processes (for example, invasions and habitat 
fragmentation, respectively) that, together with the underly-

ing ecological dynamics, determine which and how many species 
we observe in a given place and time1–4. Classic and more recent 
studies have focused on characterizing the limits on the maxi-
mum number of species that can coexist under given constraints5–9. 
Yet, we know little about the assembly and disassembly processes 
under which a community can reach such a maximum number, 
or whether this number is attainable in practice10. Specifically, can 
these assembly and disassembly processes operate smoothly until 
reaching the limits of coexistence, as assumed in classic coexistence 
studies11,12? Or is it possible that they find holes where coexistence 
abruptly breaks before reaching the limits, causing discontinuities in  
both processes13?

Indeed, our current understanding of the assembly and 
disassembly of ecological systems has two contrasting perspectives. 
The first perspective, grounded in classic works14,15, suggests that 
these two processes are predictable following an axis of increas-
ing ecological complexity. This predictability has been echoed by 
heuristic rules16, mathematical formalisms17 and conceptual frame-
works12 assuming that species coexistence is mostly additive. For 
instance, the mutual invasibility criterion establishes that, given a 
pool of S species, if all combinations of (S − 1) species coexist, the 
group of S species can also coexist, and vice versa. Consequently, 
under this first perspective, the assembly and disassembly processes 
are expected to operate smoothly until reaching the limits of coex-
istence (that is, reaching the maximum number of species that can 
coexist). The second perspective originates in evidence showing 
that the assembly and disassembly of ecological systems are very 
difficult to predict18–20. This difficulty comes from a complex inter-
play between many ecological and evolutionary processes, includ-
ing species interactions21, environmental conditions22, dispersal23, 

priority effects1, phylogenetic relationships24,25 and stochasticity26. 
Actually, while the mutual invisibility criterion can be a good rule 
of thumb, research has shown that it is unlikely to be observed in 
multispecies systems27,28. Consequently, under this second perspec-
tive, it is expected that coexistence breaks before reaching its limits, 
causing discontinuities in the assembly and disassembly processes. 
Importantly, the discrepancies between these two perspectives are 
partly due to the challenges of performing experimental work and 
partly due to the challenges of developing a formalism under which 
one can systematically study the multidimensional aspects of spe-
cies coexistence25.

Here, we introduce a new formalism to study the space of spe-
cies coexistence formed by a given species pool. Our formalism 
captures coexistence using a hypergraph with vertices correspond-
ing to species and hyperedges corresponding to species collections 
that coexist (one hyperedge per species collection that coexists). 
To study the space of species coexistence, we embed such coexis-
tence hypergraphs in the Euclidean space. This embedding con-
sists of associating to each vertex (that is, species) a point in the 
space and representing each hyperedge as a filled space between the 
corresponding vertices. In this way, filled spaces represent coex-
istence relationships between species groups, while empty spaces 
represent a lack of coexistence. Under this formalism, we show 
that discontinuities in the assembly and disassembly of ecological 
systems result in holes (empty spaces surrounded by filled space) 
of different dimensions in these coexistence hypergraphs, which 
we call coexistence holes. A coexistence hole occurs during the 
assembly process when a particular species collection is conceiv-
able from a bottom-up perspective (that is, it can be assembled from 
sub-collections that coexist), but it is not realized (that is, it does 
not coexist). In turn, a coexistence hole occurs during the disassem-
bly process when a particular species collection is realized (that is, 
it does coexist), but it cannot be disassembled into sub-collections 
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(that is, its sub-collections cannot coexist). In this sense, coexistence 
holes indicate obstructions to assemble or disassemble a system. 
Detecting coexistence holes in ecological systems can help uncover 
hidden regularities in their assembly and disassembly, revealing 
what is possible and what is not.

We have organized this article as follows. First, we introduce for-
mal definitions of coexistence holes, demonstrating their presence 
in small classic models of competition6,29,30 and mutualism31. Next, 
we combine our formalism with a structuralist approach10,13,32,33 to 
study the emergence of coexistence holes in systems with a larger 
number of species. Finally, we study coexistence holes in five experi-
mental microbial systems. We conclude by discussing the possible 
applications and limitations of our formalism.

Discontinuities in assembly and disassembly processes
Coexistence holes. We consider ecological systems where individu-
als have been organized into S species (functional groups, taxa or 
other meaningful organizations). Following previous studies34–36, 
we assume that every species collection either coexists or does 
not coexist (we discuss later how our framework can be adapted 
when coexistence depends on the initial species abundance). To 
study coexistence holes during the assembly process, we introduce 
the assembly hypergraph, H. This hypergraph has the isolated spe-
cies {1, 2, ⋯, S} as vertices and it has one hyperedge, h ⊆ {1, ⋯, S}, 
for each different species collection that can coexist (Methods 
and Supplementary Note 1). Here, the dimension of a hyperedge 
h ∈ H is dim(h) = ‘the number of species in h’ − 1. The maximum 
maxh∈H dim(h) + 1 characterizes the limits of coexistence. Below 
such limits, the coexistence hypergraphs can have additional struc-
ture, as we discuss below.

We illustrate the concept of coexistence hypergraphs in the toy 
ecological system of S = 3 species of Fig. 1a. In this hypothetical 
ecological system, species survive in isolation and coexist when 
assembled in pairs, but species will not coexist when assembled 
in a trio (Fig. 1b). The corresponding assembly hypergraph is 
H = [ [1], [2], [3], [1, 2], [2, 3], [3, 1] ] and the limit of coexistence 
is two species. By embedding the assembly hypergraph into a 
Euclidean space, discontinuities reveal themselves as holes in the 
hypergraph, which we call assembly holes. For example, embedding 
the assembly hypergraph H of the above toy ecological system into 
the plane reveals a one-dimensional assembly hole (Fig. 1c). The 
dimension of a hole is defined as the minimum dimension of its 
boundary. Zero-dimensional holes correspond to connected com-
ponents of the hypergraph. We say a system has zero-dimensional 
holes if it contains two or more connected components. In our toy 
system, the hole’s boundary, {[1, 2], [2, 3], [3, 1]}, is one dimensional, 
making the hole itself one dimensional. A two-dimensional hole 
would appear, for example, in a hypergraph that looks like a tet-
rahedron with an empty interior. Thus, assembly holes occur dur-
ing an assembly process to build a certain species collection (for 
example, to build [1, 2, 3]) if coexistence abruptly breaks at the end 
(Fig. 1d). Assembly holes characterize unexpected obstructions 
to build larger species collections from smaller ones—species col-
lections that do not coexist, although they can be assembled from 
sub-collections that coexist.

To study coexistence holes during the disassembly process, we 
introduce the disassembly hypergraph, D. By definition, D contains 
all of the missing boundaries in the hyperedges of H, together with 
all species that survive in isolation (Methods and Supplementary 
Note 1). Therefore, except for zero-dimensional hyperedges (that 
is, isolated species), each hyperedge of D is a species collection 
that does not coexist despite it having been disassembled from a 
larger species collection that can coexist. To illustrate the disas-
sembly hypergraph in an elementary case, consider the ecological 
system of S = 3 species with coexistence outcomes as in Fig. 1e. 
Here, the trio of species coexists despite none of its pairs coexist. 

The assembly hypergraph for this hypothetical ecological system 
is H = [ [1], [1, 2, 3] ] (see Fig. 1e). The corresponding disassembly 
hypergraph is D = [ [1], [2], [3], [1, 2], [2, 3], [3, 1] ]. Thus, by embed-
ding the disassembly hypergraph into a Euclidean space, disconti-
nuities in the coexistence reveal themselves as disassembly holes. 
For example, embedding the disassembly hypergraph of the above 
toy ecological system into the plane uncovers a one-dimensional 
disassembly hole (Fig. 1f). Disassembly holes occur during a dis-
assembly process starting at a certain species collection if coexis-
tence abruptly breaks at the start (for example, starting at [1, 2, 3] 
in Fig. 1g). Disassembly holes characterize unexpected obstruc-
tions to build smaller species collections from bigger ones—species 
collections that can be disassembled into sub-collections that do 
not coexist. In this sense, disassembly holes represent fragile spe-
cies collections where removing one species will cause secondary 
extinctions.

Coexistence holes in small systems with classic dynamics. We 
illustrate assembly holes in the classic consumer–resource model 
of Tilman21,29, considering S = 3 species that compete for M = 2 
resources. Assuming that each species can reproduce using at least 
one resource, it follows that the three species always survive in isola-
tion. An additional consequence of this model is the limits of coex-
istence37: with two resources, at most, two species can coexist (that 
is, the assembly hypergraph cannot have the interior [1, 2, 3] of the 
triangle). However, the specific shape of the assembly hypergraph 
will depend on how the species consume the resources (Methods 
and Supplementary Note 2). If both resources are essential for the 
three species to grow, but one species is competitively superior to 
the other two, the assembly hypergraph will have two components 
characterized by two zero-dimensional assembly holes (Fig. 2a,b). 
Suppose now that the resources are complementary for one spe-
cies (that is, species 2 has a positive reproductive rate even if one 
resource is absent; Fig. 2c). In that case, the assembly hypergraph 
has only one zero-dimensional assembly hole (Fig. 2d). Finally, sup-
pose that species 1 consumes only resource 1, species 2 consumes 
both resources in a complementary way and species 3 consumes 
only resource 2 (Fig. 2e). Then, the assembly hypergraph has one 
one-dimensional assembly hole (Fig. 2f).

Disassembly holes occur, for example, in systems with mutual-
ism or special types of competition between species (Methods). 
Specifically, two zero-dimensional disassembly holes occur when 
S = 2 species survive through obligate mutualism only31 (Fig. 
2g,h). A one-dimensional disassembly hole occurs for S = 3 species 
engaged in cyclic competition38, where only species in isolation or 
in the trio coexist (Fig. 2i,j).

Uncovering coexistence holes via homology theory. In general, 
characterizing all discontinuities in the assembly and disassembly 
processes requires identifying all of the coexistence holes of dif-
ferent dimensions in the assembly and disassembly hypergraphs 
(see Methods for the formal definition of assembly and disassem-
bly holes of arbitrary dimension). Identifying coexistence holes in 
systems with more than three species is challenging because their 
assembly/disassembly hypergraphs may not be adequately embed-
ded into a two- or three-dimensional space. Consider the assembly 
hypergraph of Fig. 3a. In this example, the assembly holes are evi-
dent from the embedding into the plane. Figure 3b shows its asso-
ciated disassembly hypergraph embedded in the plane. From this 
embedding, it is not evident that the species collection [5, 6, 7, 8, 9] 
is a two-dimensional disassembly hole.

To overcome the above challenge, we constructed a novel 
homology theory to calculate the so-called Betti numbers of arbi-
trary hypergraphs (Methods and Supplementary Note 3). The Betti 
numbers are the vector β = [β0, β1, ⋯], where βk (k ≥ 0) counts the 
number of k-dimensional holes in the hypergraph. For example, 
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the Betti numbers for the assembly hypergraph of Fig. 3a are 
β(H) = [2, 3, 0, 0, ⋯]. The Betti numbers for the disassembly hyper-
graph of Fig. 3c are β(D) = [4, 1, 1, 0, ⋯]. The Betti numbers distil 
the essential form of assembly/disassembly hypergraphs into their 
(homotopic) assembly/disassembly skeletons—namely, a minimal 
hypergraph with the same Betti numbers (Fig. 3b,d).

results
A structuralist approach to explain coexistence holes. To study 
how coexistence holes emerge in ecological systems with a larger 
number of species, we adopt a structuralist approach13,33 (Methods). 
We make this approach concrete by leveraging the mathemati-
cal tractability of the Lotka–Volterra model. Following previous 
works32,39, we assume that the system’s structure is phenomeno-
logically captured by the interaction matrix A = {aij}Si,j=1, with aij 
representing the effect of species j on the per-capita growth rate of 
species i. In turn, the context is phenomenologically captured by 
the intrinsic growth rates r = {ri}Si=1, with ri representing how spe-
cies i grows in isolation under given factors. We assume the context 
can change uniformly at random over the positive section of the  
unit sphere.

Under the above assumptions, from the universe of all pos-
sible assembly and disassembly skeletons, the interaction matrix 
A constrains which ones can be realized given the system’s struc-

ture. From the set of all skeletons that can be realized, the intrinsic 
growth rates r determine which assembly and disassembly skeletons 
will be observed for that particular context. For example, consider 
the hypothetical system of S = 6 species interacting as described by 
the interaction matrix A of Fig. 4a. From this interaction matrix,  
a fixed and finite set of possible assembly and disassembly skeletons 
emerge (Fig. 4b). Each one of these skeletons is compatible with  
a specific range of directions of r, implying that each assembly 
and disassembly skeleton will be selected from the set of possible 
skeletons with a different probability. A large probability associ-
ated with a skeleton implies a larger fraction of external conditions 
(intrinsic growth rates) compatible with such a skeleton. Thus, the 
higher the probability of being selected, the higher the chances that 
a given skeleton occurs due to internal constraints (species inter-
actions) alone. In our example, we have 4 possible assembly skel-
etons and 14 possible disassembly skeletons (Fig. 4c). Skeletons with 
assembly and disassembly holes are possible (white bars in Fig. 4c). 
Ecological systems with a higher strength or number of interspecific 
interactions can adopt a larger number of skeletons (Supplementary 
Note 5.1 and Supplementary Fig. 5).

Coexistence holes in random Lotka–Volterra systems. Figures 2i,j 
and 4a–c show that assembly and disassembly holes emerge in sim-
ple population dynamics, without sophisticated mechanisms such 
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as complex functional responses40 or higher-order interactions41. To 
investigate how general this conclusion is, we systematically anal-
ysed an ensemble of systems governed by Lotka–Volterra dynamics 
with random interaction matrices A (Methods and Supplementary 
Note 5.2). Two parameters of the interaction matrix characterize 
the ensemble: the connectance, CA ∈ [0, 1], describing the probabil-
ity that two species interact, and the typical interspecific interaction 
strength, σA > 0. We found that as soon as the interaction matrix 
exceeds a small complexity threshold measured by σACA, the pres-
ence of assembly and disassembly holes is unavoidable (Fig. 4d and 
Supplementary Note 5.3). This result implies that discontinuities are 
the norm rather than the exception in the assembly and disassembly 
of random (unstructured) Lotka–Volterra systems.

We also found that coexistence holes in random Lotka–Volterra 
systems obey two general patterns. First, knowledge of the disas-
sembly skeleton strongly determines which assembly skeleton 
the system can adopt, but not vice versa (Supplementary Note 
5.4 and Supplementary Fig. 6). That is, there is an asymmetry in 

the information contained in the assembly and disassembly skel-
etons. Second, low-dimensional and high-dimensional assem-
bly/disassembly holes are unlikely to co-occur. That is, when the 
numbers of low-dimensional (that is, one- or two-dimensional) 
and high-dimensional (that is, three- or four-dimensional) holes 
are used as coordinates in a plane, the assembly and disassembly 
skeletons generated by random Lotka–Volterra models avoid the 
upper-right corner (Fig. 4e). This pattern arises because the likeli-
hood of observing assembly or disassembly holes depends on their 
dimensions and the particular interaction matrix (Supplementary 
Note 5.5 and Supplementary Fig. 7). Specifically, high-dimensional 
assembly holes are more likely at weak interspecific interactions, 
whereas low-dimensional holes are more likely at strong interspe-
cific interactions. We also observe that the probability of finding 
an assembly or disassembly hole decreases with the hole’s dimen-
sion, and that systems tend to generate more disassembly skeletons 
than assembly skeletons (Supplementary Fig. 7). Mathematically, it 
is possible to conceive hypergraphs that simultaneously have many 
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low- and high-dimensional holes. Therefore, the absence of such 
skeletons shows how the internal constraints of random ecological 
systems (characterized by the interaction matrix) shape the likeli-
hood of observing certain discontinuities.

Coexistence holes in empirical ecological systems. To study 
whether coexistence holes occur in empirical ecological systems, we 
analysed five experimental microbial communities: Vandermeer42 
(S = 4), Friedman16 (S = 8), Stein43 (S = 12), Venturelli44 (S = 14) 
and MDSINE45 (S = 16). In each of these studies, a Lotka–Volterra 
model was parameterized and systematically validated using 
high-resolution experimental data, resulting in empirical estima-
tions of the parameters A and r (Methods and Supplementary Note 
6).

All five empirical interaction matrices can generate assembly 
and disassembly holes (Supplementary Fig. 8a–e). The numbers of 
possible assembly and disassembly skeletons differ across ecologi-
cal systems, but most skeletons contain assembly and disassembly 
holes. In the two systems with smaller species pools, the empirical 
interaction matrices generate more assembly skeletons than disas-
sembly skeletons (1.8 and 1.55 times more for Vandermeer’s and 
Friedman’s, respectively). The small number of disassembly skel-
etons in these systems could be explained by their size and simple 
assembly rules16. For the systems with larger species pools, the 
empirical interaction matrices generate between 2.14 (Venturelli’s) 
and 221.5 (MDSINE) times more disassembly skeletons than assem-

bly skeletons, as happens in random (unstructured) Lotka–Volterra 
systems. Importantly, these interaction matrices for larger species 
collections tend to have a larger proportion of skeletons with coex-
istence holes (that is, with discontinuities). We also confirm our 
expectations that low- and high-dimensional assembly/disassembly 
holes are unlikely to co-occur (grey points in Supplementary Fig. 
8j–f). In the three systems with larger species pools, we also find 
that disassembly skeletons strongly influence assembly skeletons, 
but not vice versa (Supplementary Fig. 9). For example, in Stein’s 
system, knowing which disassembly skeleton was adopted reduces 
the uncertainty of the adopted assembly skeleton by 91.68%. In con-
trast, knowing the assembly skeleton reduces the uncertainty of the 
adopted disassembly skeleton by 63.42%. In the MDSINE system, 
knowing the disassembly reduces the uncertainty of assembly by 
74.54%, while assembly reduces the uncertainty of disassembly by 
<0.05%.

The role of internal and external constraints. Next, we focus on 
the five empirical assembly and disassembly hypergraphs obtained 
from the experimentally parameterized (A, r) (Fig. 5a–e). For 
Vandermeer’s and Friedman’s, we find that their assembly hyper-
graphs are a simplicial complex. A simplicial complex is a particu-
lar hypergraph where each hyperedge has all of its boundaries (Fig. 
5a,b). Notice that this occurs if and only if the associated disas-
sembly hypergraph consists only of the isolated vertices. A system 
whose assembly hypergraph is a simplicial complex follows the sim-
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ple closed-under-inclusion assembly rule: a species collection coex-
ists if all of its sub-collections coexist. For Friedman’s system, this 
result agrees with the existence of a simple assembly rule derived in 
their original work16. There is a large probability of observing such 
a simple assembly rule for Vandermeer’s system due to internal con-
straints alone (among the random disassembly skeletons, the prob-
ability is P = 0.82 for observing the empirical disassembly skeleton 
with only isolated vertices). For Friedman’s system, such probability 
is lower (P = 0.25), indicating that external factors (intrinsic growth 
rates) also play a role. Interestingly, it is possible to explain the lack 
of holes of dimension 1 or higher in Vandermeer’s system by inter-
nal constraints alone (P = 0.48). In contrast, explaining the presence 
of the two one-dimensional assembly holes in Friedman’s system 
also requires considering external factors (P = 0.08 for internal con-
straints alone).

Stein’s and Venturelli’s systems contain higher-dimensional 
assembly and disassembly holes (Fig. 5c,d). The empirical assem-
bly and disassembly skeletons of Stein’s system cannot be explained 
by internal constraints alone (P = 6.66 × 10−4 and P < 3.33 × 10−4, 
respectively). A similar situation occurs for Venturelli’s (P = 0.13 
and P = 0.01 for the empirical assembly and disassembly skeletons). 
For MDSINE (the system with the largest species pool), the dimen-
sion of its assembly and disassembly hypergraphs only allowed us to 
compute its assembly and disassembly holes up to dimension 2. This 
empirical assembly skeleton consists of a single connected compo-
nent without holes, and internal constraints alone can explain it 
(P = 0.999). However, its empirical disassembly skeleton has holes, 
and it is unlikely by internal constraints alone (P = 6 × 10−3). These 

results confirm that internal constraints (species interactions) play 
an important role in the emergence of coexistence holes.

Finally, to understand what properties render an empirical skel-
eton more or less likely to be observed, we compared the number 
of empirical coexistence holes of different dimensions with their 
randomizations (Fig. 5f–j). We find cases of depletion or (strong) 
enrichment in the number of coexistence holes, depending on the 
particular system and the hole’s dimension. In all empirical assem-
bly and disassembly skeletons, low- and high-dimensional holes 
do not co-occur (colours in Supplementary Fig. 8), supporting our 
finding that coexistence holes obey general patterns. These results 
indicate that coexistence holes occur in empirical systems at spe-
cific dimensions due to a combination of internal constraints and 
external factors.

Discussion
Coexistence in multispecies systems has ubiquitous discontinui-
ties or obstructions characterized by coexistence holes. Assembly 
holes do not exist if and only if β(H) = [1, 0, ⋯, 0]. In this particular 
case, it is possible to build each species collection that coexists from 
its sub-collections (that is, assembled from the bottom up), and an 
invasion analysis46 can be applied with confidence. Our analysis of 
random (unstructured) and empirical ecological systems based on 
the Lotka–Volterra model suggests that the absence of coexistence 
holes is the exception rather than the norm. In particular, with ran-
dom interactions, coexistence holes are more likely to occur when 
their complexity increases. This result aligns with May’s complex-
ity–stability trade-off47,48, indicating that stability loss contributes 
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to generating discontinuities in the assembly and disassembly of 
ecological systems. It remains open to understand the prevalence 
of coexistence holes in more realistic situations, such as when spe-
cies have specific interaction types49, when the interactions are 
non-randomly organized50 or when abiotic conditions affect species 
interactions51.

Our analysis also suggests that coexistence holes obey general 
patterns. Knowing the disassembly skeleton of a system also informs 
about the assembly skeleton, but not vice versa. This result suggests 
that, in multispecies experiments, focusing on characterizing their 
disassembly is better as it contains more information about both 
processes. Understanding which ecological properties lead to this 
pattern is an important open question for future research. We also 
find that low- and high-dimensional coexistence holes are unlikely 
to co-occur. This result is expected for random systems. For example,  

high-dimensional assembly holes need larger species collections 
to coexist to form the hole’s boundary. For random systems, this 
is more likely with weak interspecies interactions. In contrast, 
low-dimensional assembly holes can occur even when small species 
collections coexist, allowing for stronger interspecies interactions. 
Our analysis of empirically parametrized Lotka–Volterra models 
supports the hypothesis that species interactions play a crucial role 
in the emergence of coexistence holes.

Additional theoretical work is needed to understand the condi-
tions leading to coexistence holes. Rough conditions can be derived 
from existing work. For example, additive coexistence52 guaran-
tees that the system’s assembly is a complete hypergraph between 
all species that survive in isolation. In general, additive coexistence 
occurs if species occupy sufficiently different ecological niches. In 
the Lotka–Volterra model, some particular system structures, such 
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as food chains, imply the absence of coexistence holes53 (see also 
refs. 25,54). Our formalism can be adapted to cases when coexistence 
depends on the initial species abundance. Using a probability distri-
bution for the initial species abundance, it is possible to calculate the 
corresponding Betti numbers’ statistics.

One limitation of our study is that we calculated assembly hyper-
graphs using mathematical models. Ideally, assembly hypergraphs 
should be entirely constructed by experimentally testing each spe-
cies collection’s coexistence. This task is feasible for systems with 
a few species55 or systems where massive automated co-culture 
experiments are possible56. We followed this approach to construct 
the assembly hypergraph of S = 5 bacterial species in Drosophila 
melanogaster gut microbiota from in vivo experimental data55 
(Supplementary Note 7). The assembly hypergraph we obtained 
has one connected component and two one-dimensional assembly 
holes, supporting our hypothesis that coexistence holes are ubiqui-
tous in ecological systems. In general, for systems with many spe-
cies, the combinatorial explosion 2S − 1 in the number of different 
species collections makes it impossible to rely on experiments only. 
Circumventing this limitation requires parameterizing population 
dynamics models to predict the coexistence of some species collec-
tions (Supplementary Note 4.3). Future work should not overlook 
the limitations of the Lotka–Volterra model57. In general, we expect 
that coexistence holes become more likely in more detailed ecologi-
cal models58.

Our formalism allows comparing the assembly and disas-
sembly of ecological systems using the corresponding hyper-
graphs’ skeletons even if they have a different number of species. 
For example, regardless of its number of species or dynamics, 
a system follows the simple closed-under-inclusion assembly 
rule if and only if β(D) = [S, 0, ⋯, 0]. Indeed, comparing objects 
through the lenses of holes is far from a novel idea. Algebraic 
topology—the branch of mathematics roughly described as the 
study of holes—originated in the work of the great mathemati-
cian Henri Poincaré in the nineteenth century59. A discovery of 
algebraic topologists is that, even in low dimensions, holes can 
appear in many non-evident ways, such as in the infamous Klein 
bottle (the bottle has two holes, one which disappears if traversed 
twice). Recently, algebraic topology is finding more applications 
across the sciences60–62. Unfortunately, with the notable exception 
of Sugihara’s work in the 1980s63, algebraic topology has been an 
underused tool in ecology.

Our work shows how species coexistence is a complex interplay 
between filled spaces (that is, species collections that coexist) and 
empty spaces (that is, species collections that do not coexist). Some 
empty spaces give rise to assembly and disassembly holes that char-
acterize cases when coexistence abruptly breaks, implying that coex-
istence (or biodiversity) is a discontinuous process13. Identifying 
these discontinuities can improve our understanding of which pro-
cesses in nature are driven by internal constraints of design and not 
merely by randomness, as it can be naively perceived.

Methods
Definition of assembly and disassembly hypergraphs. Denote by V = {1, 2, ⋯, S} 
the species pool and by 2V its power set (that is, the collection of all subsets of V). 
We adopt as convention that sets do not contain repeated elements. Given a species 
collection Σ ∈ 2V, we assume its coexistence is a dichotomy. Thus, we formalize 
species coexistence as a function c: 2V → {0, 1}. For any species collection Σ ∈ 2V, 
we interpret the condition c(Σ) = 1 as ‘species in Σ coexist’ and c(Σ) = 0 as ‘species 
in Σ do not coexist’. If Σ contains a single species, coexistence is interpreted as 
surviving in isolation. For mathematical completeness, for the empty set ∅ ∈ 2V, 
we define c(∅) = 0.

To describe species coexistence in an ecological system, we need to encode all 
coexistence relationships that one species has with any other species collection. 
These relationships can be encoded using a hypergraph (Supplementary Note 1).  
Specifically, the assembly hypergraph H = (V, H) captures all coexistence 
relationships, where V is its vertex set and H ⊆ 2V is its hyperedges given by:

H := {Σ ∈ 2V
|c(Σ) = 1}.

Note that in this hypergraph, a successful assembly process adding one species at 
a time consists of moving from an initial hyperedge of dimension d (representing 
an initial species collection that coexists) to some adjacent hyperedge of dimension 
d + 1 (for example, moving from [1] to [1, 2] in Fig. 1a).

Next, we introduce the notion of disassembly hypergraph D(H). For a 
hypergraph H, denote by K(H) = {σ ⊂ V∣σ ⊂ τ for some τ ∈ H} the minimal 
simplicial complex containing it. Recall that a simplicial complex is a hypergraph 
H such that if h ∈ H is a hyperedge then τ ∈ H for all τ ⊂ h. In words, in a 
simplicial complex, each hyperedge contains all of its boundaries. Define the 
missing boundary of a hypergraph H as M(H): = K(H)⧹H. Then, the disassembly 
hypergraph D(H) of the hypergraph H = (V, H) is D = (V, D(H)), where:

D(H) = M(H) ∪ {h ∈ H such that cardinality (h) = 1}.

Assembly holes in Tilman’s consumer–resource model. This classic model 
considers S species indirectly interacting by consuming M resources that are 
supplied to the system29. Denoting by xi(t) and Rj(t) the abundance of the ith 
species and jth resource at time t ≥ 0, the model takes the form:

ẋi = xi [ fi(R1, · · · , RM) − mi ] , i = 1, · · · , S,

Ṙj = (R◦

j − Rj) −
M∑

k=1
hjk xkfk(R1, · · · , RM), j = 1, · · · , M.

(1)

Above, the symbol ‘·’ denotes a derivative with respect to time. The parameters 
of the model are: the mortality rate mi > 0 of the i-th species, the functional 
relationship fi : RM �→ R between the availability of resources and the per-capita 
growth rate of species i, the supply rate R◦

j ≥ 0 of the j-th resource and the impact 
vector hi = (h1i , · · · , hMi)

T  of the i-th species (with hji ≥ 0 describing the amount 
of resource j required to produce an individual of species i). The impact matrix is 
H = (hij) ∈ R

M×S. Recall that, in this model, a feasible interior equilibrium exists 
for some species collection only if the supply rate R◦ = (R◦

1 , · · · , R◦

M) lies in the 
cone spanned by their impact vectors29. If a feasible equilibrium exists, the species 
collection coexists if such equilibrium is stable.

For our analysis, we studied S = 3 species, M = 2 resources and three different 
forms in which species consume the resources. First, in the system of Fig. 2a,b, 
both resources are essential for the three species (that is, the species’ reproductive 
rate is zero if any resource is absent). This is modelled using

fi(R1, R2) = min
{

μi
R1

R1 + K , R2

R2 + K

}

and the impact matrix

H =

( 2.49771 0.889986 1.959

2.04922 3.22467 2.46907

)

.

We use the parameters K = 1, m1 = 0.15, m2 = 0.3, m3 = 0.08, μ1 = 0.5, μ2 = 2.5 and 
μ3 = 1 and the supply rate R∘ = (0.6, 0.8). The bottom panel of Fig. 2a displays 
the zero net growth isoclines (ZNGIs) in the resource plane where the species’ 
population does not change. The species collection [1, 2] coexists since it has a 
feasible equilibrium (the supply rate is the cone spanned by the impact vectors). 
Furthermore, this equilibrium is stable (Supplementary Fig. 1a). The ZNGI for 
species 3 is below the ZNGIs of the other two species, indicating that species 3 is 
competitively superior and it cannot coexist with the other two species. Therefore, 
the assembly hypergraph has two zero-dimensional assembly holes represented by 
two connected components (Fig. 2b). More broadly, for essential resources, we find 
that at most one pair of species will coexist, even if the ZNGI of species 3 intersects 
the ZNGIs of species 1 and 2. Hence, the assembly hypergraph of the system always 
contains at least two zero-dimensional holes. Note that zero-dimensional assembly 
holes characterize groups where species coexist with some species of the same 
group, but they do not coexist with any species of other groups.

Second, in the system of Fig. 2c,d, resources are essential for species 1 and 2 but 
complementary for species 2 (that is, species 2 has a positive reproductive rate even 
if one resource is absent). Specifically, we keep the same f1(R1R2) and f3(R1, R2) as in 
the first system, but for species 2 we use:

f2(R1, R2) =
R1

R1 + K + 0.8 R2

R2 + K ,

with K = 1. The impact matrix is chosen as:

H =




1.49084 1.63248 0.531918

0.960242 0.356332 1.69407





and the supply rates are R∘ = (0.9, 0.7). Geometrically, these choices result in a 
curved ZNGI for species 2 that intersects the ZNGIs of the other two species 
(bottom panel of Fig. 2c). For this particular example, a feasible equilibrium 
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exists for all pairs of species. However, only two of these three equilibria are stable 
(Supplementary Fig. 1b). Consequently, the assembly hypergraph looks like a 
broken triangle and consists of one connected component (Fig. 2d).

Finally, in the system of Fig. 2e,f, species 1 consumes only resource 1, species 
2 consumes both resources in a complementary way and species 3 consumes only 
resource 2. We model this case using:

f1(R1, R2) = 0.5 R1

R1 + K , f3(R1, R2) =
R2

R2 + K .

In this sense, resource 1 is essential for species 1 and resource 2 is essential for 
species 3. Furthermore, we assume that species 2 consumes both resources, and 
that for this species both resources are complementary:

f2(R1, R2) =
R1

R1 + K +
R2

R2 + K .

For the results of the text, we choose K = 1 and the mortality rates m1 = 0.15, 
m2 = 0.4 and m3 = 0.3. The impact matrix is:

H =




3.93957 1.0809 0

0 0.86745 3.33962



 .

The supply rate is R∘ = (0.8, 0.8). Under these conditions, a stable interior 
equilibrium exists for all pairs of species (Supplementary Fig. 1c). However, since 
the triangle’s interior cannot be realized due to the limits of coexistence, the 
assembly hypergraph has one one-dimensional assembly hole (Fig. 2f).

Disassembly holes in classic models of mutualism and cyclic competition. We 
study disassembly holes in a classic phenomenological model of mutualism for 
S = 2 species31. Denoting by xi(t) the abundance of the i-th species at time t, the 
model takes the form:

ẋ1 = x1
(
r1 − r1

K(x2 ;b) x1
)
,

ẋ2 = x2
(
r2 − r2

K(x1 ;a) x2
)
,

with ri > 0 the intrinsic growth rate of species i, and 
K(x;c) = k0

(
1 − exp

(
− cx

k0

))
. The mutualistic interaction strength of species 

2 on species 1 (respectively species 1 on species 2) is described by the parameter 
a > 0 (respectively b > 0) (see Fig. 2g). In this model, species cannot survive in 
isolation, but the two species can coexist if the mutualistic interaction strengths are 
large enough (ab > 1). The parameter plane (a, b) has an obligate mutualism region 
where both species coexist (bottom panel of Fig. 2g). In this region, the coexistence 
hypergraph is H = [ [1, 2] ], producing a disassembly hypergraph D = [ [1], [2] ] 
with two zero-dimensional disassembly holes (Fig. 2h). Higher-dimensional 
disassembly holes can appear in systems involving many species that coexist 
through obligate mutualism only. For the results presented in the main text, we 
choose r1 = r2 = 1 and k0 = 1.

We also study disassembly holes in the May–Leonard classic model of cyclic 
competition between S = 3 species30. In this model, species directly compete with 
each other according to the Lotka–Volterra equations with the interaction matrix 
shown in Fig. 2i and equations given by

ẋ1 = x1 (1 − x1 − αx2 − βx3) ,

ẋ2 = x2 (1 − βx1 − x2 − αx3) ,

ẋ3 = x3 (1 − αx1 − βx2 − x3) .
The parameters α > 0 and β > 0 describe the competitive strength between 
species. Species always survive in isolation, but their coexistence in pairs and the 
trio depend on the competition parameters (bottom panel of Fig. 2i). When the 
competition parameters are asymmetrical, only isolated species and the trio of 
species coexist, producing one one-dimensional disassembly hole (Fig. 2j).

A homology theory for hypergraphs. Here, we present a summary of our 
methods, referring to the Supplementary Notes for details and examples. 
Our formalism considers arbitrary hypergraphs H over the set of vertices 
V = {1, 2, ⋯, S}. By construction, hypergraphs are combinatoric objects (that is, 
collections of subsets of V). To study their structure, and in particular to identify 
their holes, we need to endow hypergraphs with the structure of a topological 
space. We do this as usual by embedding the hypergraph into an S-dimensional 
Euclidean space RS. First, we associate to each vertex i ∈ V the i-th unit vector of 
R

S. Second, a hyperedge h ∈ H is associated to the relative interior of the simplex 
spanned by the unit vectors associated to the vertices it contains—a process we 
denote as relint(h). In this form, the embedding or geometric realization |H| ⊆ R

S 
of the hypergraph H is:

|H| :=
∪

h∈H
relint(h).

Note that the location of the vertices in the space is arbitrary. Therefore, we focus 
only on the topological properties of the geometric realization of hypergraphs—
that is, properties that remain invariant when the geometric realization of a 
hypergraph is transformed without glueing or cutting it (that is, invariant to 
homeomorphisms).

Since in principle the dimension S can be arbitrarily large, we study 
the topological properties of hypergraphs using algebraic topology. From a 
mathematical viewpoint, analysing the topological space generated by the 
geometric realization of a hypergraph is difficult because it is neither open nor 
closed in RS. Specifically, calculating the holes of ∣H∣ requires using the notion of 
singular homology, which is in general very challenging to calculate. Indeed, there 
only exists a mature theory with efficient algorithms to analyse the topological 
properties of the special class of hypergraphs known as simplicial complexes—
hypergraphs where each hyperedge contains all of its boundaries64,65. To the best 
of our knowledge, there is no efficient algorithm to calculate the homology (Betti 
numbers) for arbitrary hypergraphs.

To circumvent the above challenge, we built a homology theory for 
hypergraphs analogous to that for simplicial complexes. We build our homology 
by imagining we explode the hypergraph into its hyperedges (see illustration of 
Supplementary Fig. 1b,c). We will now connect back these hyperedges ensuring 
that we keep the original structure of the hypergraph. To characterize those 
connections that are allowed, we define the notion of k-simplex:

Definition 1. A k-simplex σ of a hypergraph H is a collection σ = {h1, h2, ⋯, hk+1} of 
(k + 1) hyperedges hi ∈ H such that hi ⊆ hi+1 for all i.

We can put together connections between groups of k hyperedges by adding 
together different k-simplices. This idea is formalized in the notion of a k-chain of 
the hypergraph. A k-chain is the formal sum

c =
∑

q
nqσq,

where each σq is a k-simplex of H, and the coefficients satisfy nq ∈ {0, 1} with 
addition defined modulo 2 (that is, 1 + 1 = 0). In words, a modulo 2 sum means 
that repeated hyperedges cancel each other out. From the above definition, we can 
construct the k-th chain group of the hypergraph H denoted by 〈Ck(H), +〉. This is 
the group of all k-chains, with ‘+’ denoting addition modulo 2.

The final notion that we need is that of boundary, defined as follows:

Definition 2. The boundary of a k-simplex σ = {h1, h2, ⋯, hk+1} of H is the (k − 1)-th 
chain:

∂kσ =

k+1∑

i=1
σ \ hi =

k+1∑

i=1
{h1, h2, · · · , hk+1} \ hi, k ≥ 0.

For completeness, we define C−1(H) as the trivial group {0}, and the 
0-boundary ∂0: C0(H) → C−1(H) as the zero epimorphism. By linearity, we extend 
the definition of boundary to chains: if c = ∑qnqσq is a k-chain, its boundary is 
defined as ∂kc: = ∑qnq∂kσq. See Supplementary Fig. 1g–i for examples. The so-called 
fundamental boundary property states that ∂k∂k+1 = 0. This property is satisfied 
using the above definition of boundary. In particular, this property implies that 
the boundary of a cycle (for example, a chain that starts and ends in the same 
hyperedge) is zero (example 8 in Supplementary Note 2).

The idea is now to use cycles to detect holes. Intuitively, a cycle could be the 
boundary of some chain, in which case it is a filled cycle. Cycles could also be the 
boundary of no chain—and in particular, of no hyperedge—implying that they 
are empty. Consequently, empty cycles characterize the boundary of a hole. Note 
that different cycles may encircle the same hole. Therefore, to count the number of 
different holes using cycles, it is necessary to construct an equivalence class of all 
cycles encircling the same hole. These ideas are made operative by characterizing 
two key subgroups of the k-th chain group Ck(H) of a hypergraph H:

Definition 3. 

 (1) The k-th cycle group Zk is:

Zk = ker ∂k := {c ∈ Ck|∂kc = ∅}.

 (2) The k-th boundary group Bk is:

Bk = im∂k+1 := {c ∈ Ck|∃d ∈ Ck+1 such that c = ∂k+1d}.

A chain c ∈ Bk is the boundary of some higher-dimensional chain d ∈ Ck+1. 
Therefore, such a k-chain c is a k-boundary or a bounding cycle. Cycles that 
are not in Bk are non-bounding cycles. Therefore, bounding cycles bound 
higher-dimensional chains so that they are filled cycles. Non-bounding cycles are 
empty cycles.

It turns out that both subgroups Zk and Bk are normal (because they are 
abelian), allowing the construction of quotient spaces. To illustrate the implications 
of this fact, consider the hypergraph of Supplementary Fig. 1b. Let b ∈ B1 and 
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z ∈ Z1 be bounding and non-bounding cycles of Supplementary Fig. 1b and 
Supplementary Fig. 1c, respectively. Glueing both cycles results in the cycle z + b of 
Supplementary Fig. 1d. Importantly, note that z + b is homologous to z. Namely, we 
can retract z + b along the solid triangle {[2, 4], [2, 3, 4], [4], [3, 4]} to obtain exactly 
z. In this sense, there exists only one cycle of the form z + B1.

The above idea is formalized by the notion of quotient space Z1/B1. Extending 
this idea from k = 1 to an arbitrary k ≥ 1 leads to the definition of homology groups:

Definition 4. The k-th homology group Hk = Hk(H) of the hypergraph H is 
Hk = Zk/Bk = ker ∂k/im∂k+1.

Thus, if z1 = z2 + Bk for some z1, z2 ∈ Zk, we say that the empty cycles z1 and z2 are 
homologous. The number of different empty cycles provide a characterization of 
the holes of the space. This is formalized by the Betti numbers, with the k-th Betti 
number corresponding to the number of k-dimensional holes of H:

Definition 5. The k-th Betti number βk(H) of the hypergraph H is βk(H) = rankHk.
In Theorem 1 of Supplementary Note 3, we prove that the constructed 

homology exactly captures all holes of the geometric realization of a hypergraph. 
That is, any hole in the geometric realization of a hypergraph corresponds to an 
empty cycle family and every empty cycle family corresponds to a hole in the 
geometric realization of the hypergraph.

Definition of assembly and disassembly holes. Our homology theory for 
hypergraphs allows us to rigorously define assembly and disassembly holes as 
follows. Let Hk(H) and Hk(D) denote the k-th homology groups of the assembly 
and disassembly hypergraphs, respectively. Then, a k-dimensional assembly is a 
chain c ∈ Hk(H), and a k-dimensional disassembly hole is a chain c ∈ Hk(D).

Identifying coexistence holes by computing Betti numbers. To efficiently calculate 
the Betti numbers of hypergraphs, we showed that they can be calculated by first 
building an inclusion graph between the hyperedges of the hypergraph and then 
constructing the associated Vietoris–Rips complex (Proposition 1 of Supplementary 
Note 3). This result enabled us to compute the Betti numbers and hence the homology 
of hypergraphs using an efficient algorithm developed for Vietoris–Rips complexes66. 
An accompanying Julia package (with interface to R) provides all of the functionalities 
introduced in this paper. To efficiently calculate these Betti numbers, we represent 
the hypergraph as a simple graph between its hyperedges (Supplementary Note 3.3). 
However, such a graph is not the best representation to easily grasp the presence 
of holes (see example 10 in Supplementary Note 3). Also, note that analysing one 
by one each connected component of a hypergraph will considerably reduce the 
computational cost of calculating Betti numbers.

A structuralist approach to understand the emergence of coexistence holes. To 
study how coexistence holes emerge in ecological systems with a larger number 
of species, we adopt a structuralist approach13,33. This approach describes a 
system using its structure (that is, internal conditions that remain fixed, such as 
species’ metabolic capacity to use some resource) and its context (that is, external 
conditions acting on the system that can change, such as temperature). It follows 
that, from the universe of all possible assembly and disassembly skeletons, the 
system’s structure determines which ones the system can adopt. From such a set of 
skeletons that the system can adopt, the context will specify which one is observed. 
By using this structuralist approach with our formalism, we can quantify the 
possible assembly and disassembly skeletons that can be observed in a given system 
(that is, the forms that the ecological system can adopt) as the context changes 
(that is, as external conditions change).

To make the above approach operative, we leverage on the mathematical 
tractability of the Lotka–Volterra population dynamics model52:

ẋi = xi



ri +
S∑

j=1
aijxj



 , i = 1, …, S.

In this model, xi(t) represents the abundance of species i at time t. The parameter 
ri represents the intrinsic growth rate of species i, and aij represents the effect that 
species j has on the per-capita growth rate of species i. The Lotka–Volterra model 
can be interpreted as a first-order approximation of the per-capita growth rate of 
species. Despite this simplicity, the Lotka–Volterra model successfully explains the 
dynamics of diverse ecological systems33,42–44,67–69.

In the idealized governing laws described by the Lotka–Volterra model, 
internal conditions are phenomenologically captured by the interaction matrix 
A = {aij}Si,j=1, describing how species interact with each other. External 
conditions are phenomenologically captured by the intrinsic growth rates 
r = {ri}Si=1, describing how species grow in isolation under given abiotic 
conditions. We use a probability density function p(r) to describe how the context 
can change. Motivated by the fact that the feasibility of a species collection in the 
Lotka–Volterra model depends on the direction of r and not on its magnitude32, 
we assume that p(r) is some probability distribution over the unit sphere. 
Furthermore, because all species survive in isolation in the empirical microbial 
systems that we analyse, we consider that p(r) is uniform over the positive section 
of the unit sphere. Assuming a uniform distribution conforms with the ergodicity 

hypothesis in dynamical systems theory33. Note that, in a general case, abiotic  
(that is, external) conditions may affect species interactions51.

Constructing assembly hypergraphs for the Lotka–Volterra model. Using the 
Lotka–Volterra formalism, we constructed the associated assembly hypergraph 
H by computing whether each of the 2S − 1 different species collections coexists 
or not under model parameters (A, r). We defined coexistence following Jansen’s 
permanence criterion35,70 (Supplementary Note 4), which for the Lotka–Volterra 
model actually implies robust permanence71.

To analyse Lotka–Volterra systems with random parameters, we constructed 
the interaction matrix A = {aij}Si,j=1 by sampling interspecific interactions i ≠ j 
as aij ~ Bernoulli(CA)Normal(0, σA) and fixing the intra-specific interactions as 
aii = −1. Here, the connectance CA ∈ [0, 1] describes the probability that two species 
interact, and σA ≥ 0 describes the typical interaction strength.

Empirical ecological systems. To study whether coexistence holes occur in empirical 
ecological systems, we analysed five experimental microbial communities: a system 
of S = 4 protozoa built by Vandermeer42; a system of S = 8 soil bacterial species built 
by Friedman et al.16; a system of S = 11 human gut bacterial species built by Stein 
et al.43; a system of S = 12 human gut bacterial species built by Venturelli et al.44; and 
an in vivo system of S = 14 gut bacterial species built for the MDSINE project45 (see 
details in Supplementary Note 6). In each of these studies, a Lotka–Volterra model 
was parameterized and systematically validated using high-resolution experimental 
data, resulting in empirical estimations of the parameters (A, r). As mentioned before, 
in all of these experimental systems, species can survive in isolation—motivating 
our assumption that p(r) is uniform over the positive section of the unit sphere. We 
choose these systems because the collected experimental data contain one or more 
measurements with the absolute abundance of species, which is a necessary condition 
for an adequate parameter inference72.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the data analysed in this study are publicly available.

Code availability
The code supporting the results is archived in the GitHub repository at https://
syntheticdynamics.github.io/CoexistenceHoles.jl.
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